期刊文献+

用块稀疏贝叶斯学习算法重构识别体域网步态模式 被引量:1

Block sparse Bayesian learning algorithm for reconstruction and recognition of gait pattern from wireless body area networks
下载PDF
导出
摘要 针对低功耗体域网步态远程监测终端非稀疏加速度数据重构和步态模式识别性能优化问题,提出了一种基于块稀疏贝叶斯学习的体域网远程步态模式重构识别新方法,该方法基于体域网远程步态监测系统架构和压缩感知框架,在体域网传感节点利用线性稀疏矩阵压缩原始加速度数据,减少传输数据量,降低其功耗,同时在远程终端基于块稀疏贝叶斯学习算法充分利用加速度数据块结构内在相关性,获取加速度数据内在稀疏性,有效提高非稀疏加速度数据重构性能,为准确识别步态模式提供可靠的数据支撑。采用USC-HAD数据库中行走、跑、跳、上楼、下楼五种步态运动的加速度数据验证新方法的有效性,实验结果表明,基于所提算法的加速度数据重构性能明显优于传统压缩感知重构算法性能,使基于支持向量机多步态分类器识别准确率可达98%,显著提高体域网远程步态模式识别性能。所提新方法不仅有效提高非稀疏加速度数据重构和步态模式识别性能,并且也有助于设计低功耗、低成本的体域网加速度数据采集系统,为体域网远程监测步态模式变化提供一个新方法和新思路。 In order to achieve the optimal performance of gait pattern recognition and reconstruction of non-sparse acceleration data from Wireless Body Area Networks( WBANs)-based telemonitoring, a novel approach to apply the Block Sparse Bayesian Learning( BSBL) algorithm for improving the reconstruction performance of non-sparse accelerometer data was proposed, which contributes to achieve the superior performance of gain pattern recognition. Its basic idea is that, in view of the gait pattern and Compressed Sensing( CS) framework of WBAN-based telemonitoring, the original acceleration-based data acquired at sensor node in WBAN was compressed only by spare measurement matrix( the simple linear projection algorithm),and the compressed data was transmitted to the remote terminal, where BSBL algorithm was used to perfectly recover the nonsparse acceleration data that assumed as block structure by exploiting intra-block correlation for further gait pattern recognition with high accuracy. The acceleration data from the open USC-HAD database including walking, running, jumping, upstairs and downstairs activities were employed for testing the effectiveness of the proposed method. The experiment results show that with acceleration-based data, the reconstruction performance of the proposed BSBL algorithm can significantly outperform some conventional CS algorithms for sparse data, and the best accuracy of 98% can be obtained by BSBL-based Support Vector Machine( SVM) classifier for gait pattern recognition. These results demonstrate that the proposed method not only can significantly improve the reconstruction performance of non-sparse acceleration data for further gait pattern recognition with high accuracy but also is very helpful for the design of low-cost sensor node hardware with lower energy consumption, which will be a potential approach for the energy-efficient WBAN-based telemonitoring of human gait pattern in further application.
出处 《计算机应用》 CSCD 北大核心 2015年第5期1492-1498,共7页 journal of Computer Applications
基金 福建省自然科学基金资助项目(2013J01220) 福建省高等学校教学改革研究项目(JAS14674) 福建师范大学本科教学改革项目(I201302021)
关键词 块稀疏贝叶斯学习算法 压缩感知 体域网 步态模式识别 Block Sparse Bayesian Learning (BSBL) algorithm Compressed Sensing (CS) Wireless Body Area Network (WBAN) gait pattern recognition
  • 相关文献

参考文献24

  • 1宫继兵,王睿,崔莉.体域网BSN的研究进展及面临的挑战[J].计算机研究与发展,2010,47(5):737-753. 被引量:57
  • 2CHEN C, ALOIS K, H-ERICH W, et al. A review of three-layer wireless body sensor network systems in healthcare for continuous monitoring [J]. Journal of Modern Internet of Things, 2013, 2(3) : 24 - 34.
  • 3WANG Z, JIANG M, HU Y, et al. An incremental learning method based on probabilistic neural networks and adjustable fuzzy cluste- ring for human activity recognition by using wearable sensors [ J]. 1EEE Transactions on Information Technology in Biomedicine, 2012, 16(4) : 691 -699.
  • 4LIN B, LIU Y, YU C, et aL Gait recognition and walking exercise intensity estimation [ J]. International Journal of Environment Re- search and Publie Health, 2014, 11(4): 3822-3844.
  • 5MI Z, ALEXANDER A S. A feature selection-base framework for human activity recognition using wearable multimodal sensor[ C]// Proceedings of the 6th International Conference on Body Area Net- works. Beijing: ICST, 2011:201 - 208.
  • 6邢秀玉,刘鸿宇,黄武.基于加速度的小波能量特征及样本熵组合的步态分类算法[J].传感技术学报,2013,26(4):545-549. 被引量:17
  • 7WANG J, LIN X, WU K. ECG data compression research based on wavelet neural network[ C]// Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Engineering. Piscataway: IEEE, 2010, 1:361-363.
  • 8AHMED Z. ECG signal compression technique based on discrete wavelet transform and QRS-eomplex estimation [ J]. Signal Process- ing: an International Journal, 2010, 4(3): 138-160.
  • 9WU H, TSAI W, CHANG W. Distributed source coding for real- time ECG signal monitoring[ J]. IEICE Transactions on Informationand Systems, 2014, (8) : 2157 -2165.
  • 10ABBAD[ N K E, AL-BAKRY A M. New efficient technique for compression of ECG signal[ J]. International Journal of Computer Science Issues, 2013, 10(4) : 139 - 146.

二级参考文献24

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2宋浩然,廖文帅,赵一鸣.基于加速度传感器ADXL330的高精度计步器[J].传感技术学报,2006,19(4):1005-1008. 被引量:35
  • 3Bao Shudi,Poon Carmen C.Y.,Shen Lianfeng,Zha.ng Yuanting.AUTHENTICATED SYMMETRIC-KEY ESTABLISHMENT FOR MEDICAL BODY SENSOR NETWORKS[J].Journal of Electronics(China),2007,24(3):421-427. 被引量:6
  • 4Warburton D E, Nicol C W, Bredin S S. Health Benefits of Physical Activity : The Evidence [ J ]. Canadian Medical Association Journal, 2006,174(6) :801-809.
  • 5Avci A,Bosch S,Marin-Perianu M,et al. Activity Recognition Using Inertial Sensing for Heahhcare Wellbeing and Sports Applications : A Survey [ J ]. Architecture of Computing Systems ( ARCS ) , 2010, 23:1-10.
  • 6Nyml MN ,Tay FEH ,ah K H W,et al. Classification of Gait Patterns in the Time-Yrequency Domain[ J ]. Journal of Bibiomechanics,2006, 39(14) :2647-2656.
  • 7Sekine M, Tamura T, Togawa T, et al. Classification of Waist- Acceleration Signals in a Continuous Walking Record[ J]. Medical Egineering and Physics,2000,22 (4) : 285-291.
  • 8Wang N, Ambikairajah E, Lovell H N, et al. Accelerometry Based Classification of Walking Patterns Using Time-Frequency Analysis [ J]. Engineering in Medicine and Biology Society, 2007:4899 -4902.
  • 9Preeee S J, Goulermas J Y, Kenney P J, et al. A Comparison of Feature Ext1"action Methods for the Classification of Dynamic Activities from Accelerometer Data [ J ]. IEEE Transactions on Biomedical Engineering,2009,56(3) :871-879.
  • 10Sekine M, Tamura T, Akay M, et al. Discrimination of Walking Patterns Using Wavlet-Based Fractal Analysis [ J ]. IEEE Transactions on Neural Systemes and Rehabilitation Engineering, 2002,10(3) :188-196.

共引文献100

同被引文献17

  • 1Donoho DL. Compressed sensing [ J ]. IEEE Trans on Information Theory, 2006, 52(4) : 1289 -1306.
  • 2Akimura D, Kawahara Y, Asami T. Compressed sensing method for human activity sensing using mobile phone accelerometers [ C ] // Ishizuka H. 2012 Ninth International Conference on Networked Sensing Systems. Antwerp : IEEE, 2012 : 1 - 4.
  • 3Davenport M, Duarte M, Wakin M, et al. The smashed filter for compressive classification and target recognition [ C ] // Proceedings of SPIE Computational Imaging V. San Jose: SPIE, 2007 : 326 - 330.
  • 4Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 5Pilllai JK, Patel VM, Chellappa R, et al. Secure and robust iris recognition using random projections and sparse representations [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011 , 33(9) : 1877 - 1893.
  • 6Hang Xiyi, Wu Fangxiang. Sparse representation for classification of tumors using gene expression data [ J]. Journal of Biomedicine and Biotechnology, 2009, 2009:403689.
  • 7Zhang Mi, Sawchuk AA. Human Daily activity recognition with sparse representation using wearable sensors [ J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17 ( 3 ) : 553 - 560.
  • 8Li Chunguang, Guo Jun, Zhang Honggang. Local sparse representation based classification [ C ] //The 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010:649 - 652.
  • 9Huang Jiabin, Yang MH. Fast sparse representation with prototypes [ C ] // IEEE conference on Computer Vision and Pattern Recognition. San Francisco : IEEE, 2010 : 3618 - 3625.
  • 10Yang Y, Jafari R, Shankar S, et al. Distributed recognition of human actions using wearable motion sensor networks [ J ]. Journal of Ambient Intelligence and Smart Environments, 2009, 1(2): 1-5.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部