期刊文献+

Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析

ANALYSIS OF THE CONVERGENCE RATES FOR THE TRUNCATION ERRORS OF PERIODIC GREEN'S FUNCTION OF HELMHOLTZ EQUATION AND ITS PARTIAL DERIVATIVES
原文传递
导出
摘要 在应用边界元方法求解Helmholtz方程周期边值问题时,需要构造以周期Green函数或其偏导数为核函数的积分算子形式的解.由于Helmholtz方程的周期Green函数G^P是一个函数项级数,该级数的通项是Hankel函数,在数值求解中,需要对其进行截断,从而很有必要研究其截断误差.本文根据Hankel函数在变量趋于无穷大时的渐近展开式,并结合Abel不等式,证明了G^P及其一阶偏导和二阶混合偏导一致收敛,且其截断误差收敛阶均为O(1/p^(1/2)).最后,通过数值实验验证了理论证明的正确性.本文的证明方法也可被用于证明其它一些方程周期Green函数的收敛性问题. To solve the numerical solutions of periodic boundary value problems of Helmholtz equations with periodic BEM, the periodic single and/or double layered potential will be constructed, the kernels of the periodic potentials are the periodic Green's function or its partial derivatives. The periodic Green's function GP of Helmholtz equation is the infinite summation of Hankel functions. In this paper, based on the asymptotic expansions of Hankel functions for large arguments, the mathematical proofs of the uniform convergence and convergence rates O(1/√P) of G^p and its derivatives are given by using the Abel's inequality. Finally, the conclusions are verified by some numerical tests. The proofs in this paper can also be used to prove the convergence of other periodic Green's functions.
出处 《计算数学》 CSCD 北大核心 2015年第2期123-136,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(11201373)
关键词 HELMHOLTZ方程 周期Green函数 Hankel函数 收敛阶 Abel不等式 Helmholtz equation periodic Green's function Hankel function convergence rates Abel's inequality
  • 相关文献

参考文献14

  • 1Milton Abramowitz and Irene A Stegun, eds., Handbook of Mathematical Functions with Fornm- las, Graphs, and Mathematical Tables[M]. Dover: New York, 1972.
  • 2Colton D and Kress R. Integral Equation Methods in Scattering Theory[M]. John Wiley and sons, New York, 1983.
  • 3Colton D and Kress R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Spring-Verlag, Berlin, 1992.
  • 4Kress R. Boundary integral equation in time-harmonic acoustic scattering[J]. Mathematical and Computer Modelling, 1991, 15(3-5): 229-243.
  • 5Kress R and Roach G F. Transmission Probelms for The Hehnoltz Equation[J]. Journal of Math- ematical Physics, 1978, 19: 1433-1437.
  • 6Venakides S, Haider M A and Papanicolaou V. Boundary integral calculations of 2-D electromag- netic scattering by photonic crystal Fabry-Perot structures[J]. SIAM Journal on Applied Mathe- matics, 2000, 60: 1686-1706.
  • 7Haider M A, Venakides S and Shipman S P. Boundary-Integral Calculations of Two-Dimensional Electromagnetic Scattering in Infinite Photonic Crystal Slabs: Channel Defects and Resonances[J].SIAM Journal on Applied Mathematics, 2002, 62(6): 2129-2148.
  • 8Otani Y and Nishimura N. An FMM for periodic boundary value problems for cracks for Helmholtz' equation in 2D[J]. International Journal for Numerical Methods in Engineering, 2008, 73: 381-406.
  • 9Barnett A and Greengard L. A new integral representation for quasi-periodic fields and its appli- cation to two-dimensional band structure calculations[J]. Journal of Computational Physics, 2010, 229: 6898-6914.
  • 10Barnett A and Greengard L. A New Integral Representation for Quasi-Periodic Scattering Prob- lems in Two Dimensions[J]. BIT Numerical Mathematics, 2011, 51: 67-90.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部