摘要
在共轭梯度思想的启发下,结合线性投影算子,给出迭代算法求解了线性矩阵方程AXB+CYD=E的M对称解[X,Y]及其最佳逼近.当矩阵方程AXB+CYD=E有M对称解时,应用迭代算法,在有限的误差范围内,对任意初始M对称矩阵对[X_,Y_1],经过有限步迭代可得到矩阵方程的M对称解;选取合适的初始迭代矩阵,还可得到极小范数M对称解.而且,对任意给定的矩阵对[X,Y],矩阵方程AXB+CYD=E的最佳逼近可以通过迭代求解新的矩阵方程AXB+CYD=E的极小范数M对称解得到.文中的数值例子证实了该算法的有效性.
Motivated by the conjugate gradient method, combined with the linear projection operator, an iterative algorithm is presented to solve the linear matrix equation AXB+CYD = E over M symmetric solution [X, Y] and its optimal approximation. When the matrix equation AXB + CYD = E is consistent over M symmetric solution, by this method, its solution can be obtained within finite iteration steps in the absence of round off errors for any initial M symmetric matrix pair [X1, Y1], and its least-norm M symmetric solution can be derived by choosing a suitable initial iterative matrix. Furthermore, for any given matrix pair [X, Y], the optimal approximation of the matrix equation AXB + CYD = E can be obtained by choosing the least-norm M symmetric solution of a new matrix equation AXB + CYD =E. Some numerical examples verify the efficiency of the algorithm.
出处
《计算数学》
CSCD
北大核心
2015年第2期186-198,共13页
Mathematica Numerica Sinica
关键词
共轭梯度
投影算子
M对称解
极小范数M对称解
最佳逼近
conjugate gradient
projection operator
M symmetric solution
least-norm M symmetric solution
optimal approximation