期刊文献+

矩阵方程AXB+CYD=E的M对称解的迭代算法 被引量:1

AN ITERATIVE ALGORITHM FOR M SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION AXB+CYD=E
原文传递
导出
摘要 在共轭梯度思想的启发下,结合线性投影算子,给出迭代算法求解了线性矩阵方程AXB+CYD=E的M对称解[X,Y]及其最佳逼近.当矩阵方程AXB+CYD=E有M对称解时,应用迭代算法,在有限的误差范围内,对任意初始M对称矩阵对[X_,Y_1],经过有限步迭代可得到矩阵方程的M对称解;选取合适的初始迭代矩阵,还可得到极小范数M对称解.而且,对任意给定的矩阵对[X,Y],矩阵方程AXB+CYD=E的最佳逼近可以通过迭代求解新的矩阵方程AXB+CYD=E的极小范数M对称解得到.文中的数值例子证实了该算法的有效性. Motivated by the conjugate gradient method, combined with the linear projection operator, an iterative algorithm is presented to solve the linear matrix equation AXB+CYD = E over M symmetric solution [X, Y] and its optimal approximation. When the matrix equation AXB + CYD = E is consistent over M symmetric solution, by this method, its solution can be obtained within finite iteration steps in the absence of round off errors for any initial M symmetric matrix pair [X1, Y1], and its least-norm M symmetric solution can be derived by choosing a suitable initial iterative matrix. Furthermore, for any given matrix pair [X, Y], the optimal approximation of the matrix equation AXB + CYD = E can be obtained by choosing the least-norm M symmetric solution of a new matrix equation AXB + CYD =E. Some numerical examples verify the efficiency of the algorithm.
作者 周海林
出处 《计算数学》 CSCD 北大核心 2015年第2期186-198,共13页 Mathematica Numerica Sinica
关键词 共轭梯度 投影算子 M对称解 极小范数M对称解 最佳逼近 conjugate gradient projection operator M symmetric solution least-norm M symmetric solution optimal approximation
  • 相关文献

参考文献13

  • 1Horn R A, Johnson C R. Topics in Matrix Analysis[M].北京:人民邮电出版社,2005,241—242.
  • 2Baksalary J K, Kala R. The matrix equation AXB + CYD = E[J]. Linear Algebra Appl., 1980, 30: 141-147.
  • 3Chu K E. Singular value and generalized singular value decompositions and the solution of linear matrix equations[J]. Linear Algebra Appl., 1987,88/89:83-98.
  • 4Xu G P, Wei M S, Zheng D S. On solutions of matrix equation AXB + CYD = F[J]. Linear Algebra Appl., 1998, 279: 93-109.
  • 5Chang X W,Wang J S. The symmetric solution of the matrix equations AX + YA = C, AXAT + BYBT =: C and (ATXA, BTXB) = (C,D)[J]. Linear Algebra Appl., 1993, 179: 171-189.
  • 6Liao A P, Bai Z Z, Lei Y. Best approximate solution of matrix equation AXB + CYD = E[J]. SIAM J. Matrix Anal. Appl., 2005, 27: 675-688.
  • 7Shim S Y, Chen Y. Least squares solution of matrix equation AXB* + CYD* = E[J]. SIAM J. Matrix Anal. Appl,, 2003, 24(3): 802-808.
  • 8袁仕芳,廖安平,雷渊.矩阵方程AXB+CYD=E的对称极小范数最小二乘解[J].计算数学,2007,29(2):203-216. 被引量:36
  • 9蒋家尚,袁永新.矩阵方程AXB+CYD=E的对角称(英文)[J].南京大学学报(数学半年刊),2008,25(2):141-148. 被引量:4
  • 10Peng Z Y, Peng Y X. An efficient iterative method for solving the matrix equation AXB+CYD = E[J]. Numer. Linear Algebra Appl., 2006, 13(6): 473-485.

二级参考文献25

  • 1廖安平,白中治.矩阵方程AXA^T+BYB^T=C的对称与反对称最小范数最小二乘解[J].计算数学,2005,27(1):81-95. 被引量:20
  • 2彭向阳,胡锡炎,张磊.矩阵方程的反对称正交反对称解及其最佳逼近[J].四川工业学院学报,2004,23(4):12-14. 被引量:1
  • 3袁永新,戴华.矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解[J].高等学校计算数学学报,2005,27(3):232-238. 被引量:16
  • 4陈景良 陈向晖.特殊矩阵[M].北京:清华大学出版社,2000..
  • 5Magnus J R.L-structured matrices and linear matrix equations,Linear and Multilinear Algebra,1983,14:67-88.
  • 6Chang X W,Wang J S.The symmetric solution of the matrix equations AX+YA=C,AXA^T+BYB^T=C,and(A^TXA,B^TXB)=(C,D).Linear Algebra Appl.,1993,179:171-189.
  • 7Dai H.On the symmetric solutions of linear matrix equations,Linear Algebra Appl.,1990,131:1-7.
  • 8Dai H,Lancaster P.Linear matrix equations from an inverse problem of vibration theory.Linear Algebra Appl.,1996,246:31-47.
  • 9Chu K E.Singular value and generalized singular value decompositions and the solution of linear matrix equations.Linear Algebra Appl.,1987,88/89:83-98.
  • 10Xu G P,Wei M S and Zheng D S.On solutions of matrix equation AXB+CYD=F.Linear Algebra Appl.,1998,279:93-109.

共引文献40

同被引文献26

  • 1王明辉,魏木生,姜同松.子矩阵约束下矩阵方程AXB=E的极小范数最小二乘对称解[J].计算数学,2007,29(2):147-154. 被引量:11
  • 2袁仕芳,廖安平,雷渊.矩阵方程AXB+CYD=E的对称极小范数最小二乘解[J].计算数学,2007,29(2):203-216. 被引量:36
  • 3Jbilou K, Messaoudi A, Sadok H. Global FOM and GMRES algorithms for matrix equations[J]. Applied Numerical Mathematics, 1999, 31(1): 49-63.
  • 4Friswell M, Mottershead J E. Finite element model updating in structural dynamics[M]. Springer Science & Business Media, 1995.
  • 5Zhang J H. Modeling of dynamical systems[M]. Beijing: National Defence and Industry Press, 2000.
  • 6Chen T W, Francis B, Hagiwara T. Optimal sampled-data control systems[J]. Proceedings of the IEEE, 1998, 86(4): 741-741.
  • 7Penrose R. A generalized inverse for matrices[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3): 406-413.
  • 8Dai H, Lancaster P. Linear matrix equations from an inverse problem of vibration theory[J]. Linear Algebra and Its Applications, 1996, 246: 31-47.
  • 9Andersson L E, Elfving T. A constrained procrustes problem[J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18(1): 124-139.
  • 10Flanders H, Wimmer H K. On the matrix equations AX - XB = C and AX - YB = C[J]. SIAM Journal on Applied Mathematics, 1977, 32(4): 707-710.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部