期刊文献+

分数阶脉冲微分方程边值问题解的存在性

Existence of Solutions for Boundary Value Problems of Impulsive Fractional Differential Equations via Critical Point Theory
下载PDF
导出
摘要 运用临界点理论中的山路引理,研究一类具有狄利克雷边值问题的分数阶脉冲微分方程解的存在性,证明了解的存在性结果. In this paper, we investigate existence results of pulsive fractional differential equations. The arguments critical point theory. Dirichlet boundary are based upon the problems for a class of im- mountain pass theorem of critical point theory.
作者 黄羿 陈国平
出处 《吉首大学学报(自然科学版)》 CAS 2015年第2期11-15,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省教育厅科学研究项目(14C0940)
关键词 脉冲 分数阶 微分方程 狄利克雷边值条件 临界点理论 impulsive fractional differential equations Dirichlet boundary conditions critical point theory
  • 相关文献

参考文献25

  • 1KILBAS A A,RIVASTAVA M,TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier Science Ltd.,2006.
  • 2IGOR PODLUBNY.Fractional Differential Equations[M].New York:Academic Press,1999.
  • 3RABINOWITZ P H.Minimax Methods in Critical Point Theory with Application to Differential Equations[M].American:American Mathematical Society,1986.
  • 4MAGIN R L.Fractional Calculus in Bioengineering[M].Redding,CT:Begell House Inc.,2006.
  • 5VASILLY E TARASOV.分数维动力学:分数阶积分在粒子,场及介质动力学中的应用[M].北京:高等教育出版社,2010.
  • 6孙文,孙洪广.李西成.力学与工程问题的分数阶导数建模[M].北京:科学出版社,2010.
  • 7汪纪峰.分数阶系统控制性能分析[M].北京:电子工业出版社,2010.
  • 8RAVI P AGARWAL,BASHIR AHMAD.Existence Theory for Anti-Periodic Boundary Value Problems of Fractional Differential Equations and Inclusions[J].Computers and Mathematics with Applications,2011,62(3):1 200-1 214.
  • 9WANG Jinrong,ZHOU Yong,MICHAL FE KAN.Nonlinear Impulsive Problems for Fractional Differential Equations and Ulam Stability[J].Computers and Mathematics with Applications,2012,64(10):3 389-3 405.
  • 10GUO Tianliang,JIANG Wei.Impulsive Problems for Fractional Differential Equations with Boundary Value Conditions[J].Computers and Mathematics with Applications,2012,64(10):3 281-3 291.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部