期刊文献+

基于粒子熵值的异常行为检测 被引量:1

Abnormal Behavior Detection Based on Particle Entropy
下载PDF
导出
摘要 在异常行为检测当中,人群的分布信息十分重要。针对该情况,提出了一种基于粒子熵值的异常行为检测方法。该方法采用混合高斯模型动态建模提取出视频图像的背景,在提取到的背景图像上使用KLT(Kanade-LucasTomasi)算法追踪前景获得人群的速度和位置。基于人群粒子的网格分布获取相对应的直方图,并通过计算直方图的粒子熵值描述人群行为;最后,结合粒子分布的熵值与人群粒子的速度,提高异常行为判断的准确性。基于不同场景下的视频序列所进行的实验测试结果验证了所提方法的有效性。 In the abnormal behavior detection,the distribution information of the crowd is very important.Aiming at the situation,an abnormal behavior detection approach based on particle entropy is proposed.The approach uses the gaussian mixture model to extract the background of the video image, KLT (Kanade-Lucas-Tomasi) algorithm is used to track foreground and to obtain the speed and location of crowd;The histogram of the crowd particle distribution is obtained based on the spaee grid where the particle locates. The crowd behavior is described by calculating the histogram particle entropy; finally, by combining the entropy of particle distribution and the speed of crowd particle,tbe algorism improves the accuracy of abnormal behavior detection.The experiments are conducted on various video datasets,and the results are presented to verify the effectiveness of the proposed scheme.
出处 《无线电通信技术》 2015年第3期66-68,共3页 Radio Communications Technology
基金 国家自然科学基金项目(61175026) 科技部国际科技合作专项(2013DFG12810) 宁波市自然科学基金(2014A610031 2014A610032) 宁波大学胡岚博士基金(ZX2013000319) 宁波大学人才工程项目(20111537)
关键词 粒子熵值 异常行为检测 人群分布信息 人群速度信息 particle entropy abnormal behavior detection crowd distribution intormation crowd speed information
  • 相关文献

参考文献11

  • 1Popoola O P, Wang K J. Video-based Abnormal Behavior Recognition-A Review [ J ]. Systems, Man, and Cybernet- ics, Part C : Applications and Reviews, IEEE Transactions on(S1094-6977) ,2012,42(6) ,865-878.
  • 2谷军霞,丁晓青,王生进.行为分析算法综述[J].中国图象图形学报,2009,14(3):377-387. 被引量:40
  • 3Cong Y, Yuan J, Liu J.Sparse reconstruction cost abnormal event detection, Comput. Vis. Pattern Recognit. ( CVPR ) ( 2011 ) 3449-3456.
  • 4Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]// Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005 : 886- 893.
  • 5Gu X,Cui J,Zhu Q.Abnormal Crowd Behavior Detection by Using the Particle Entropy[ J ] .Optik-international Journal for Light and Electron Optics ,2014,125(14) :3428-3433.
  • 6Stauffer C,Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[ C ] //Computer Vision and Pattern Recognition, 1999.IEEE Computer Society Confer- ence on.IEEE, 1999 : 246-252.
  • 7Tomasi C,Kanade.T Detection and tracking of point fea- tures [ R ]. Tech. Rep. CMU-CS-91-132, Carnegie Mellon University, 1991.
  • 8Freeman W T, Roth M.Orientation Histograms for Hand Gesture Recognition [ C ] // International Workshop on Automatic Face and Gesture Recognition. 1995:296-301.
  • 9杜鉴豪,许力.基于区域光流特征的异常行为检测[J].浙江大学学报(工学版),2011,45(7):1161-1166. 被引量:20
  • 10Mehran R, Oyama A, Shah M.Abnormal Crowd Behavior Detection Using Social Force Model[ C] //Computer Vi- sion and Pattern Recognition, 2009 : 935- 942.

二级参考文献77

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 3Aggarwal J K, Cai Q. Human motion analysis: A review [ J]. Computer Vision and Image Understanding, 1999, 73 (3) : 428-440.
  • 4Gavrila D M. The visual analysis of human movement: A survey [ J]. Computer Vision and Image Understanding, 1999, 73( 1 ): 82-98.
  • 5Moeslund Thomas B, Granum Erik. A survey of computer visionbased human motion capture [ J ]. Computer Vision and Image Understanding, 2001, 81 (3): 231-286.
  • 6Moeslund Thomas B, Hilton Adrian, Kruger Volker. A survey of advances in vision-based human motion capture and analysis [ J]. Computer Vision and Image Understanding, 2006, 104(3) : 90-126.
  • 7Johansson G. Visual motion perception [ J ]. Scientific American, 1975, 232(2) : 76-88.
  • 8Robertson N, Reid I. A general method for human activity recognition in video [ J ]. Computer Proceedings of Vision and Image Understanding, 2006, 104(2-3): 232-248.
  • 9Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], New York, USA, 2006: 1709-1718.
  • 10Wang Liang, Suter David. Informative shape representations for human action recognition [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], Hong Kong, 2006: 1266-1269.

共引文献58

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部