摘要
建立一种基于情绪的Nash-Q决策模型,它由认知层和情绪层组成.认知层模型由Nash-Q算法实现,情绪层建立在情绪记忆和评价理论之上,由高兴、伤心、恐惧、厌烦组成情绪空间,建立相应刺激与情绪映射模型、情绪与行为动作映射模型、每种情绪下的动作信任度评价模型.将文中模型应用到两智能体网格决策实验中,结果表明情绪层的引入可加快收敛速度,同时能有效防止陷入局部最优,更好兼顾在线学习的"保守"和"探索"平衡.
An emotion decision-making model consisting of cognition layer and emotion layer is constructed, the cognition layer is implemented in the Nash-Q algorithm, and the emotion layer is based on the theory of emotion memory and evaluation. The emotion space includes happiness, sadness, fear, boredom. The stimulus-to-emotion mapping model, emotion-to-action mapping model and the evaluation model of action credibility for each emotion are built respectively. The proposed model is applied to two-agent grid decision-making experiment. The results show that the convergence speed is higher when the Nash-Q algorithm is combined with emotional layer, and the model can effectively avoid local optimum. The model keeps better balance between conservation and searching in online learning.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2015年第4期369-376,共8页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61373068)
国家教育部/博士学科点专项科研基金项目(No.20133305110004)
浙江省自然科学基金项目(No.LY13F020037)
浙江省重点实验室开放基金项目(No.ZKL-PR-200307)
宁波市科技计划项目(No.2013D10011
2014C50018)资助