期刊文献+

Global well-posedness for the dynamical Q-tensor model of liquid crystals 被引量:2

Global well-posedness for the dynamical Q-tensor model of liquid crystals
原文传递
导出
摘要 We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions. We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
出处 《Science China Mathematics》 SCIE CSCD 2015年第6期1349-1366,共18页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China(973 Program)(Grant No.2011CB808002) National Natural Science Foundation of China(Grant Nos.11071086,11371152,11401439 and 11128102) the Natural Science Foundation of Guangdong Province(Grant No.S2012010010408) the Foundation for Distinguished Young Talents in Higher Education of Guangdong(Grant No.2014KQNCX162) the University Special Research Foundation for Ph.D Program(Grant No.20104407110002) the Science Foundation for Young Teachers of Wuyi University(Grant No.2014zk06)
关键词 dynamical tensor Stokes parabolic nematic viscosity Navier estimates uniqueness proof 向列液晶 适定性 Navier-Stokes方程 张量 模型 流体模拟 解的存在性 连续依赖性
  • 相关文献

参考文献3

二级参考文献62

  • 1Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35:771-831.
  • 2Casella E, Secchi P, Trebeschi P. Global existence of 2D slightly compressible viscous magneto-fluid motion. Port Math N S, 2002, 59:67 89.
  • 3Choe H J, Jin B J. Global existence of solutions to slightly compressible Navier-Stokes equations in two dimension. Preprint.
  • 4Climent-Ezquerra B, Guill6n-Gonzalez F, Rojas-Medar M. Reproductivity for a nematic liquid crystal model. Z Angew Math Phys, 2006, 57:984-998.
  • 5De Gennes P G. The Physics of Liquid Crystals. New York: Oxford University Press, 1974.
  • 6Ding S J, Huang J R, Wen H Y, et al. Incompressible limit of the compressible hydrodynamic flow. J Funct Anal, 2013, 264:1711 1756.
  • 7Ding S J, Lin J Y, Wang C Y, et al. Compressible hydrodynamic flow of liquid crystals in 1D. Discret Contin Dyn Syst, 2012, 32:539-563.
  • 8Ding S J, Wang C Y, Wen H Y. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discret Contin Dyn Syst, 2011, 15:357-371.
  • 9Ericksen J. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9:371-378.
  • 10Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243-257.

共引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部