期刊文献+

Ferrihydrite preparation and its application for removal of anionic dyes 被引量:3

Ferrihydrite preparation and its application for removal of anionic dyes
原文传递
导出
摘要 Anionic dyes are hazardous and toxic to living organisms. For this study, ferrihydrite was prepared to test its removal capabilities on anionic dyes. A ferrihydrite particle prepared in neutral environmental conditions is sphere-like with a diameter of 2-4 nm and its total surface area is approximately 229 m^2· g^-1. In this paper, the effects of solution pH, competitive anions, and temperature on the adsorption of acid fuchsine onto ferrihydrite and the regeneration-reutilization of ferrihydrite were investigated in detail. The results indicate that ferrihydrite is an efficient sorbent for the removal of acid fuchsine at pH 4.0. The inhibitory effect of various competing anions on the present adsorption follows the precedence relationship: NO3 〈C1- 〈SO2- 〈H2PO~. Adsorption isotherms of acid fuchsine on ferrihydrite fit the Langmuir equation well. The Gibbs free energy, enthalpy, and entropy data of adsorption indicate that this adsorption is a spontaneous, exothermic, and physical process. A ferrihydrite was regenerated and reused five times, still retaining its original adsorption capacity. Anionic dyes are hazardous and toxic to living organisms. For this study, ferrihydrite was prepared to test its removal capabilities on anionic dyes. A ferrihydrite particle prepared in neutral environmental conditions is sphere-like with a diameter of 2-4 nm and its total surface area is approximately 229 m^2· g^-1. In this paper, the effects of solution pH, competitive anions, and temperature on the adsorption of acid fuchsine onto ferrihydrite and the regeneration-reutilization of ferrihydrite were investigated in detail. The results indicate that ferrihydrite is an efficient sorbent for the removal of acid fuchsine at pH 4.0. The inhibitory effect of various competing anions on the present adsorption follows the precedence relationship: NO3 〈C1- 〈SO2- 〈H2PO~. Adsorption isotherms of acid fuchsine on ferrihydrite fit the Langmuir equation well. The Gibbs free energy, enthalpy, and entropy data of adsorption indicate that this adsorption is a spontaneous, exothermic, and physical process. A ferrihydrite was regenerated and reused five times, still retaining its original adsorption capacity.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第3期411-418,共8页 环境科学与工程前沿(英文)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 21077031).
关键词 SORPTION acid fuchsine FERRIHYDRITE REGENERATION sorption, acid fuchsine, ferrihydrite, regeneration
  • 相关文献

参考文献1

二级参考文献11

共引文献17

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部