期刊文献+

一类不可约Z-矩阵的预条件AOR迭代法

A new preconditioned AOR iterative method for irreducible Z-matrices
下载PDF
导出
摘要 对于系数矩阵为不可约的Z-矩阵的大型线性方程组,给出了一类新的预条件AOR迭代法,并证明其在给定的条件下是收敛的,数值例子证明解的有效性. This paper presented a new preconditioned AOR - type iterative method for solving the linear system, where coefficient matrix was an irreducible Z-matrix. And some theorems and corollaries were given to show that the new preconditioned A0R iterative method was convergence under the given condition. Numerical example verifies the validity.
作者 赵桐 韩海山
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2015年第1期105-107,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 预条件 Z-矩阵 AOR迭代法 收敛性 preconditioning Z-matrices AOR iterative method convergence
  • 相关文献

参考文献4

  • 1WANG G B,ZHANG N,TAN F P.Preconditioned AOR iterative method for Z-matrices[J].Appl.Math.&Informatics,2010,28(5-6):1409-1418.
  • 2WANG X Z,HUANG T Z,FU Y D.Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J].Comput.Appl.Math.,2007,206:726-732.
  • 3方保镕 周继东 李医民.矩阵论[M].北京:清华大学出版社,2004..
  • 4LI A J.Preconditioned AOR iterative method and comparison theorems for irreducible L-matrices[C]//Proceedings of the World Congress on Engineering and Computer Science 2010,WCECS 2010,20-22October,2010,San Francisco,USA,pp.21-24.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部