期刊文献+

基于精细梁模型的向量式有限元分析 被引量:1

Vector form intrinsic finite element analysis based on fine beam model
下载PDF
导出
摘要 精细梁不同于Euler梁和Timoshenko梁,该模型在考虑剪切变形的同时还考虑了横向弯曲时截面转动产生的附加轴向位移及横向剪切变形影响截面抗弯刚度后产生的附加横向位移。推导了适用于向量式有限元分析的精细梁单元应变和内力表达式,采用FORTRAN自编了向量式有限元程序。对悬臂梁、两端固支梁和门式框架进行了算例分析,对比了采用不同梁单元模型下结构的竖向位移。结果表明:当高跨比较小时,3种梁单元的竖向位移相差不大;当高跨比较大时,精细梁单元的竖向位移较Euler梁和Timoshenko梁明显增大,表明剪切变形及刚度折减引起的附加轴向位移、附加横向位移不能忽略。精细梁单元模型对高跨比较大的梁进行分析可望得到更精确的结果。 The proposed fine beam model is different from that of Euler beam and Timoshenko beam .Some effects were considered in the new model such as shear displacement ,the additional axial displacement produced by lateral bending and the additional transverse displacement produced by reduced stiffness due to transverse shear deformation .The formula of strain and internal force of the fine beam model ,applied to Vector Form Intrinsic Finite Element (VFIFE ) analysis ,were derived and corresponding programs were developed by Fortran language . Cantilever beam ,both ends clamped beam and portal frame are analyzed and the vertical displacements were compared using different beam element models .Numerical results showed that when the depth‐span ratio was relatively small ,the vertical displacements obtained by different beam model had slight difference .When the depth‐span ratio was larger ,the vertical displacement obtained by the fine beam model was obviously larger than that obtained by the Euler beam and Timoshenko beam . Therefore ,the shear displacement ,the additional axial displacement and the additional transverse displacement caused by stiffness reduction should not be ignored when the deep beam was analyzed .The new beam model proposed in this paper demonstrated more accurate results when the beam had a large depth‐span ratio .
出处 《土木建筑与环境工程》 CSCD 北大核心 2015年第2期1-7,共7页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金项目(51278461) 浙江省重点科技创新团队(2010R50034)~~
关键词 Euler梁 TIMOSHENKO梁 精细梁 向量式有限元 高跨比 Euler beam model Timoshenko beam model fine beam model VFIFE depth-span ratio
  • 相关文献

参考文献14

  • 1丁承先,王仲宇,吴东岳,等.运动解析与向量式有限元[R].中国,台湾:中央大学工学院桥梁工程研究中心,2007.
  • 2Ting E C,Shih C,Wang Y K.Fundamentals of a vector form intrinsic finite element:Part I.Basic procedure and a plane frame element[J],Journal of Mechanics,2004,20(2):113-122.
  • 3Ting E C,Shih C,Wang Y K.Fundamentals of a vector form intrinsic finite element:Part II.
  • 4Shih C,Wang Y K,Ting E C.Fundamentals of a vector form intrinsic finite element:Part III.Convected material frame and examples[J].Journal of Mechanics,2004,20(2):133-143.
  • 5喻莹.基于有限质点法的空间钢结构连续倒塌破坏研究[D].浙江大学,2012.
  • 6班自愿,张若京.悬臂梁大变形的向量式有限元分析[J].计算机辅助工程,2010,19(4):25-28. 被引量:4
  • 7梁育铭,高楼施工之向量式有限元模拟[D].中原大学,2012.
  • 8Timoshenko S P.On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J].Philosophical Magazines,1921,41:744-746.
  • 9Thomas J,Abbas BAH.Finite element model for dynamic analysis of Timoshenko beam[J].Journal of Sound and Vibration,1975,41(3):291-299.
  • 10Nickell R E,Secor G A.Convergence of consistently derived Timoshenko beam finite elements[J],International Journal for Numerical Method in Engineering,1972,5:243-245.

二级参考文献6

  • 1丁承先.运动解析与向量式有限元[D].台北:中央大学,2007.
  • 2王能起.数值分析简明教程[M].武汉:华中科技大学出版社,2002:13-26.
  • 3PAI P F,PALAZOTTO A N.Large-deformation analysis of flexible beams[J].Int J Solids & Structures,1996,33(9):1335-1353.
  • 4TING E C,SHIH Chiang,WANG Yeon-kang.Fundamentals of a vector form intrinsic finite element:part Ⅰ:Basic procedure and a plane frame element[J].J Mech,2004,20(2):113-122.
  • 5王仁佐.向量式结构运动解析[D].台北:中央大学,2005.
  • 6刘磊,许克宾.杆系结构非线性分析中TL列式和UL列式[J].工程力学,2000,1(A01):361-365. 被引量:4

共引文献3

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部