期刊文献+

四点弯曲Ⅰ—Ⅱ混合型裂纹断裂特性T应力影响分析

The Effect of T-stress on the Crack Growth and Propagation of Specimen Subjected I-II Mixed Mode
下载PDF
导出
摘要 工程岩体大多处于复杂的应力环境中。由于岩体裂纹走向相对于荷载方向的随机性,岩体脆性断裂多数由于Ⅰ-Ⅱ混合型裂纹的产生,因此研究岩石Ⅰ-Ⅱ混合型裂纹断裂有着非常重要的理论意义和工程价值。现行通用的适用于Ⅰ-Ⅱ混合型裂纹的断裂准则,如最大周向应力准则,即MTS(Maximum tangential stress criterion)准则,最小应变能密度准则,即SED(Minimum strain energy density criterion)准则,最大应变能释放准则,即G(Maximum energy release rate criterion)准则,均未考虑T应力的影响。本文通过理论分析,ABAQUS数值模拟,反对称四点弯曲实验研究三个方面探究T应力对裂纹起裂扩展到影响。 Cracked rock masses are usually subjected to complex loading conditions. Because of arbitrary orientation of cracks relative to the loading directions, brittle fracture in rocks may occur due to a combination of two major fracture modes, i.e. crack opening mode (mode I) and crack sliding mode (mode II). Therefore, the studying of rock fracture on Ⅰ-Ⅱ mixed mode has important Theoretical significance and work value. Current widely used fracture criterion for Ⅰ-Ⅱ mixed mode crack, such as MTS (Maximum tangential stress criterion), SED (Minimum strain energy density criterion), G (Maximum energy release rate criterion) have not consider the effect of T-stress. This paper has studied the effect of T-stress on the crack growth and propagation through Theoretical analysis, ABAQUS finite element method simulation, experiment studying by anti-symmetric four-point bend specimen.
出处 《建筑工程(中英文版)》 2015年第1期7-13,共7页 Architectural Engineering
基金 国家973项目,2010CB732005 151111省科技计划项目(2014JY0002) 油气藏地质及开发工程国家重点实验室资助项目(PLN1202)1
关键词 Ⅰ-Ⅱ混合型裂纹 T应力 裂纹扩展 ABAQUS有限元 Ⅰ-Ⅱ Mixed Mode Crack T-stress Crack Growth and Propagation ABAQUS Finite Element Method
  • 相关文献

参考文献22

  • 1J.G. Williams, P.D. Ewing, Int. J. Fract. 8 (1972) 441-446.
  • 2Y. Ueda, K. Ikeda, T. Kao, M. Aoki, Eng. Fract. Mech. 18 (1983) 1131-1158.
  • 3Betegon C, Hancock J W. Two-parameter characterization of elastic-plastic crack-tip fields [J]. Journal of Applied Mechanics, 1991, 58:104-110.
  • 4Smith D J, Ayatollahi M R, Pavier M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading [J]. Fatigue Fracture and Engineering Materials, 2001, 24:137-150.
  • 5A.R. Shahani, S.A. Tabatabaei. Effect of T-stress on the fracture of a four point bend specimen [J]. Materials and Design 30 (2009) 2630-2635.
  • 6H. Saghafi, M.R. Ayatollahi, M. Sistaninia. A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials [J]. Materials Science and Engineering A 527 (2010) 5624-5630.
  • 7赵艳华,陈晋,张华.T应力对Ⅰ-Ⅱ复合型裂纹扩展的影响[J].工程力学,2010,27(4):5-12. 被引量:23
  • 8周绍青,郭少华,李显方.T应力对岩石断裂韧度及扩展路径的影响[J].中南大学学报(自然科学版),2009,40(3):797-802. 被引量:23
  • 9高玉华,汪洋,程长征.广义T应力对裂纹应力强度因子的影响[J].中国科学技术大学学报,2009,39(12):1319-1322. 被引量:6
  • 10Lewis, Tim. T-stress solutions for cracks at notches and in cylinders. [J]Masters Abstracts International.2006, 44-05.

二级参考文献51

  • 1Williams J G, Ewing P D. Fracture under complex stress-the angled crack problem[J]. International Journal of Fracture, 1984, 26(4): 346-351.
  • 2Ueda Y, Ikeda K, Yao T. Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads[J]. Engineering Fracture Mechanics, 1983, 18(6): 1131-1158.
  • 3Larrsson S G, Carlsson A J. Influence of non-singular term and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials[J]. Journal of Mechanics and Physics and Solids, 1973, 21(4): 263-277.
  • 4Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity[J]. Journal of Mechanics and Physics and Solids, 1974, 22(1): 17-26.
  • 5Ayatollahi M R, Aliha M R M. Fracture toughness study a brittle rock subjected to mixed mode I / lI loading[J]. Rock Mechanics and Mining Sciences, 2007, 44:617-624.
  • 6Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. Int J Fracture, 1980, 16(1): 155-169.
  • 7Fett T, Rizzi G. Weight functions for stress intensity factors and T-stress for oblique cracks in a half-space[J]. Int J of Fraet, 2005, 132(1): 9-16.
  • 8Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. J Basic Eng ASME, 1963, 85: 519-525.
  • 9Lira I L, Johnston I W, Choi S K, et al. Fracture testing ofa soit rock with semi-circular specimens under three-point bending[J]. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(3): 199-212.
  • 10Schmidt R A. A microcrack model and its significance to hydraulic fracturing and fracture toughness testing[C]// Proceedings of 21st US Symposium Rock Mechanics. 1980: 581-590.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部