摘要
多基线相位解缠绕问题可以转化为求解L1范数优化问题的最优解,然而L1范数多基线相位解缠绕算法存在内存需求量大的问题,且对噪声严重的干涉相位图处理效果不理想。为了减少用线性规划算法解L1范数多基线相位解缠绕时内存需求较大的问题,该文提出用L∞范数的惩罚函数来近似L1范数的惩罚函数以减少优化模型中优化变量的大小,从而将多基线相位解缠绕模型其目标函数变为L∞范数+L1范数的形式,并且优化变量的大小减少了约57%。最后,通过一个噪声严重的实测数据对该文算法进行了验证,实验结果表明,该文提出的方法不仅可以有效地解缠绕质量较好的条纹图,同时对噪声严重区还具有一定的滤波效果。
Multi-baseline phase unwrapping problem can be solved according to find the optimal solution of the L1-norm optimization. However, there are two problems: one is the huge memory required and the other is the difficulty in processing interferograms with severe noise. In order to decrease the memory requirement of the L1-norm method, with a cost function of L∞-norm is employed to approximate the L1-norm. Consequently, the objective function of the improved multi-baseline phase unwrapping is the form of L∞-norm+L1-norm, and the size of the new optimization variable is decreased by 57%. The performance of the proposed algorithm is validated via a real dataset with severe noise present, and the experiment demonstrates that the proposed algorithm not only presents a well phase unwrapping result of interferograms with good quality, but also performs a filtering against noise region.
出处
《电子与信息学报》
EI
CSCD
北大核心
2015年第5期1111-1115,共5页
Journal of Electronics & Information Technology
基金
国家自然科学基金优秀青年基金(61222108)资助课题