期刊文献+

基于信誉机制的分布式扩散最小均方算法 被引量:4

Distributed Diffusion Least Mean Square Algorithm Based on the Reputation Mechanism
下载PDF
导出
摘要 非安全环境中的无线传感器网络(WSN)可能存在恶意攻击节点,恶意节点将会篡改其观测数据以影响参数估计的准确性。为此,该文提出基于信誉机制的分布式扩散最小均方(R-d LMS)算法和扩散归一化最小均方(R-d NLMS)算法。该算法能够根据各节点对整个网络参数估计的贡献来设置相应的信誉值,从而减小恶意节点对网络攻击的影响。仿真结果表明,与无信誉值的算法相比,该算法的性能得到大幅度提高,且R-d NLMS算法在R-d LMS算法的基础上,算法性能得到进一步提升。 To deal with the problem of signal estimation for Wireless Sensor Networks (WSN) in a untrustworthy environment where malicious nodes tamper the measured data, two reputation-based Mgorithms, that are, Reputation-based diffusion Least Mean Square (R-dLMS) algorithm and Reputation-based diffusion Normalized Least Mean Square (R-dNLMS) algorithm, are proposed. The proposed algorithms could assign the appropriate reputation value to each node according to its contribution to the whole network, and minimize the reputation value of malicious nodes to lower the impact of malicious nodes in the network. Simulation results show that the proposed algorithms can greatly improve the performance compared with the one without reputation value, and the performance of R-dNLMS algorithm has been further improved based on R-dLMS algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1234-1240,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271276 61301091) 陕西省国际合作项目(2013KW01-03) 工业和信息化部通信软科学项目(2014R33) 陕西省自然科学基金(2014JM8299)资助课题
关键词 无线传感器网络 恶意攻击 分布式 扩散最小均方 信誉值 Wireless Sensor Network (WSN) Malicious attack Distributed Diffusion Least Mean Square (dLMS) Reputation value
  • 相关文献

参考文献6

二级参考文献68

  • 1Cattivelli F S, Sayed A H. Diffusion Strategies for Distributed Kalman Filtering and Smoothing[J]. Au- tomatic Control, IEEE Transactions on, 2010, 55 (9) : 2069-2084.
  • 2Liu Juan, Reich J, Zhao Feng. Collaborative in-net- work processing for target tracking [J ]. EURASIP Journal On Applied Signal Applied Signal Processing, 2003(4) :378-391.
  • 3Xiao Lin, Boyd S, Lall S. A space-time diffusion scheme for peer-to-peer least-squares estimation[C]// The 5th International Conference on Information Pro- cessing in Sensor Networks. New York, NJ, USA. ACM, 2006:168-176.
  • 4Chen Bo, Yu Li, Zhang Wen-An, et. al. Distributed robust fusion Kalman filtering for uncertain stochastic systems with random delays and missing measure- ments[C]// Control Conference (ASCC), 2011 8th Asian. 15-18 May 2011: 288-1293.
  • 5Yoon Ju-hong, Bae Seung-hwan, Shin V. Comparison of Distributed Fusion Filters for Linear Dynamic Sys- tem with Uncertainty[C]// Computer and Network Technology (ICCNT), 2010 Second International Conference on. 23-25 April 2010: 367-371.
  • 6Olfati-Saber R. Distributed Kalman Filter with embed- ded consensus filters[C]//44th IEEE Conference on Decision and Control, 2005 and 2005 European Con- trol Control Conferenc 2005. 8170-8184.
  • 7Talebi M S. Adaptive Consensus Averaging for Infor- mation Fusion over Sensor Networks[C]// Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE In- ternational Conference on.. Oct. 2006.. 562-565.
  • 8Olfati-Saber R. Distributed Kalman Filtering for Sen- sor Networks[C]//46th IEEE Conference on Decision and Control 2007 , New Orleans, LA. Dee. 2007: 12-14.
  • 9孙利民;李建中;陈渝.无线传感器网络[M]北京:清华大学出版社,201011-16.
  • 10Cattivelli F S,Sayed A H. Diffusion Strategies for Distributed Kalman Filtering and Smoothing[J].IEEE Transactions on Automatic Control,2010,(09):2069-2084.

共引文献21

同被引文献22

  • 1THEODORIDIS S, SLAVAKIS K, YAMADA I. A- daptive learning in a world of projections [J/OL]. IEEE Signal Processing Magazine, 2011, 28 (1) : 97- 123 [ 2015-10-117. http://ieeexplore, ieee. org/xpls/ icp. jsp? arnumber~5670637.
  • 2XIE S L, LI H R. Distributed LMS with limited data rateFJ/OL]. Electronics Letters, 2011, 47 (9) : 541- 542 [2015-10-111. http..//dx, doi. org/10. 1049/el. 2011. 0251.
  • 3CATTIVELLI F S, SAYED A H. Modeling bird flight formations using diffusion adaptation[J/OL3. IEEE Transactions on Signal Processing, 2011, 59 (5): 2038-205112015-10-111. http://dx, doi. org/10. ll09/TSP. 2011. 2107907.
  • 4LOPES C G, SAYED A H. Incremental adaptive strategies over distributed networks [J/OL]. IEEE Transactions on Signal Processing, 2007, 55 (8) : 4064-407712015-10-11]. http://dx, doi. org/10. 1109/ TSP. 2007. 896034.
  • 5LOPES C G, SAYED A H. Diffusion least-mean squares over adaptive networks: formulation and per- formance analysisrJ/OL]. IEEE Transactions on Sig- nal Processing, 2008, 56(7): 3122-313612015-10- 11]. http://dx, doi. org/10, ll09/TSP. 2008. 917383.
  • 6SCHIZAS I D, MATEOS G, GIANNAKIS G B. Dis- tributed LMS for consensus-based in-network adaptive processing[J/OL]. IEEE Transactions on Signal Pro- cessing, 2009, 57 (6): 2365-23821-2015-10-11]. ht- tp://dx, doi. org/10, ll09/TSP. 2009. 2016226.
  • 7LIU Y, TANG W K S. Enhanced incremental LMS with norm constraints for distributed in-network esti- mation[J/OL]. Signal Process, 2014, 94(1): 373-385 [2015-10-11]. http://dx, doi. org/10. 1016/j. sigpro. 2013.07. 001.
  • 8LORENZO P D, SAYED A H. Sparse distributed learning based on diffusion adaptation[J/OL]. IEEE Transactions on Signal Process, 2013, 61 (6).. 1419- 1433[2015-10-11]. http..//dx, doi. org/10. 1109/TSP. 2012. 2232663.
  • 9KAR S, MOURA J M F, RAMANAN K. Distributed pa- rameter estimation in sensor networks: nonlinear observa- tion models and imperfect communication [J/OL]. IEEE Transactions on Information Theory, 2008, 58(6): 3575- 3605 E 2015-10-11]. http;//ieeexplore, ieee~ org/stamp/ stamp, jsp? arnumber=6172233.
  • 10CATTIVELLI F S, SAYED A H. Diffusion LMS strategies for distributed estimation [J/OL], IEEE Transactions on Signal Process, 2010, 58(3).. 1035- 1048 [2015-10-11]. http://dx, doi. org/10. 1109~~ 2fTSP. 2009. 2033729.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部