期刊文献+

基于Canny边缘检测的自适应空域隐写术 被引量:10

Adaptive Spatial Steganography Based on Canny's Edge Detection
下载PDF
导出
摘要 针对自适应空域隐写术设计的关键问题,该文结合Canny边缘检测和校验格编码(STC)提出一种不需要同步边信息的自适应空域隐写方法。首先,根据秘密消息长度、载体图像等因素确定Canny边缘检测算法中的参数取值,进而根据相应的参数取值使用Canny边缘检测算法来选择载体图像的边缘区域。然后,分别定义边缘区域像素和非边缘区域像素的嵌入失真;最后,在载体像素的多个最低有效位平面(LSB)使用STC嵌入秘密消息。实验结果表明:该隐写方法在4种嵌入率情况下抵抗常见通用隐写分析的性能优于3种已有的隐写方法,且在较小嵌入率情况下与空域通用小波相对失真方法(S-UNIWARD)相当。 Aiming at the essential problems of the design of adaptive spatial steganography, this paper proposes an adaptive spatial steganographic algorithm without synchronizing the side information, combining with Canny's edge detection algorithm and the Syndrome Trellis Code (STC). Firstly, the parameters of Canny's algorithm are obtained on the basis of the factors, including the length of the secret message, the cover image, and so on; then Canny's algorithm is used to select the edge region of the cover image. Moreover, the embedding distortions of the edge and non-edge pixels are defined respectively. Finally, the STC is used to embed the secret message in multiple Least Significant Bit (LSB) planes of the pixels. The experimental results illustrate that, under the condition of four kinds of embedding rates, when resisting common universal steganalysis, the proposed method performs better than other three existing methods, and is comparable to the Spatial-UNiversal WAvelet Relative Distortion (S-UNIWARD) under the condition of small embedding rates.
作者 韩涛 祝跃飞
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1266-1270,共5页 Journal of Electronics & Information Technology
基金 国家科技支撑计划(2012BAH47B01) 国家自然科学基金(61170234 61309007) 郑州科技创新团队项目(10CXTD150) 信息工程大学博士研究生学位论文创新基金(BSLWCX201309)资助课题
关键词 信息安全 隐写术 自适应隐写 边缘检测 校验格编码 Information security Steganography Adaptive steganography Edge detection Syndrome Trellis Code (STC)
  • 相关文献

参考文献15

  • 1Filler T, Judas J, and Pridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935.
  • 2Pevnf T, Bas P, and Fridrich J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215-224.
  • 3Pevn T, Filler T, and Bas P. Using high-dimensional image models to perform highly undetectable steganography[C]. Proceedings of 12th International Workshop on Information Hiding, Calgary, Canada, 2010: 161-177.
  • 4Holub V and Fridrich J. Designing steganographic distortion using directional filters[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Tenerife, Spain, 2012: 234-239.
  • 5Holub V, Fridrich J, and Denemark T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014(1): 1-13.
  • 6Mielikainen J. LSB matching revisited[J]. IEEE Signal Processing Letters, 2006, 13(5): 285-287.
  • 7Luo W, Huang F, and Huang J. Edge adaptive image steganography based on LSB matching revisited[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 201-214.
  • 8Lu Y, Li X, and Yang B. A secure steganography: noisy region embedding[C]. Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 2009: 1046-1051.
  • 9Zhang W, Zhang X, and Wang S. A double layered "plus-minus one" data embedding scheme[J]. IEEE Signal Processing Letters, 2007, 14(11): 848-851.
  • 10Han T, Zhang W, Wang C, et al: Adaptive :1 steganography in extended noisy region[J]. The Computer Journal, 2014, 57(4): 557-566.

同被引文献53

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部