期刊文献+

组合风险的重要性抽样方法 被引量:1

Importance SamplingMethod for Portfolio Risk
下载PDF
导出
摘要 针对资产组合的市场风险或信用风险的任意边际分布的Gaussian Copula模型,首先将损失转化成高维正态分布的函数,然后对该模型进行重要性采样蒙特卡罗模拟以提高模拟效率,并分别使用牛顿法和基于大偏差理论估计测度变换的系数,并在此基础上提出了常数凝固估计法.数值实验表明,提出的算法与通常的蒙特卡罗方法相比,大大减小了模拟误差,从而提高了计算效率. Based on the Gaussian Copula model with arbitrary marginal distribution in portfolio's market risk or credit risk; To improve the efficiency in Monte Carlo simulation with importance sampling, we first transform loss to a function of a high-dimensional normal vector, then the Newton's method and a method based on the large deviation theory are used to estimate the coefficients in measure transformation, and the method of freezing coefficient is also proposed. Numerical experiments show that compared with standard Monte Carlo method, the algorithm proposed in the paper reduce simulation error greatly and therefore improve computational efficiency.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期633-638,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(11171256) 上海市教委计算科学E-研究院资助项目(E03004)
关键词 重要性抽样 蒙特卡罗模拟 组合风险 Gausian COPULA模型 importance sampling Monte Carlo simulation portfolio risk Gaussian Copula model
  • 相关文献

参考文献16

  • 1余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76
  • 2Jorion P.Value at risk[M].New York:McGraw-Hilll,2001.
  • 3Rockafellar R T,Uryasev S.Optimization of conditional value at risk[J].Journal of Risk,2000,2(3):21.
  • 4Basel Committee on Banking Supervision.International Convergence of Capital Measurement and Capital Standards:A Revised Framework[M].Basel:Bank for Internationall Settlements,2004.
  • 5Huang P,Subramanian D,Xu J.An importance sampling method for portfolio CVaR estimation with Gaussian copula models[C]//Proceedings of the 2010 Winter Simulation Conference(WSC).Savannah:WSC,2010:2790-2800.
  • 6Glasserman P,Heidelberger P,Shahabuddin P.Asymptotic optimal importance sampling and stratification for pricing pathdependent options[J].Mathematical Finance,1999,9:117.
  • 7Glasserman P,Li J.Importance sampling for portfolio credit risk[J].Management Science,2005,51(11):1643.
  • 8Glasserman P,W Kang,Shahabuddin P.Fast simulation of multifactor portfolio credit risk[J].Operation Research,2008,56:1200.
  • 9Egloff D,Leippold M,Jhri S,et al.Optimal importance sampling for credit portfolios with stochastic approximation[Z].Zürich:University of Zürich.Zürcher Kantonalbank and Swiss Banking Institute,2005.
  • 10Reitan T,Aas K.A new robust importance-sampling method for measuring valueat-risk and expected shortfall allocations for credit portfolios[J].Journal of Credit Risk,2010,6(4):113.

二级参考文献10

  • 1Morgen J P. Risk Metrics-Technical Document[ M]. 3rd ed. New York: Morgen Trust Company Global Research, 1995.
  • 2Billo M, Pelizzon L. Value-at-risk: A multivariate switching regime approach[J]. Journal of Empirical Finance, 2000, 7: 531-554.
  • 3Vlaar P J G. Value at risk models for Dutch bone portfolios[J]. Journal of Banking and Finance, 2000, 24: 1121-1154.
  • 4Beltratti A, Morana C. Computing value at risk with high frequency data[ J]. Journal of Empirical Finance, 1999, (6): 421-455.
  • 5Joans Andresson. On the normal inverses Gaussian stochastic volatility model[ J]. Journal of Bussiness of Economics Statistics,2001, 19: 44-52.
  • 6Harvey A C, Ruiz E, Shephard N. Multivariate stochastic variance models[J]. Review of Economic Studies, 1994, 61: 247-267.
  • 7Kim Shephard, Chib. Stochastic volatility: Likelihood inference and comparison with ARCH models[ J]. Review of Economic Studies, 1998, 65: 361-393.
  • 8Durbin J, Koopman S J. Monte Carlo maximum likelihood estimation for non-Gaussian state space models[ J]. Biometrica, 1997,84: 669-684.
  • 9Ruiz E. Qusi-maximum likelihood estimation of stochastic volatility models[J]. Journal of Econometrics, 1994, 63: 289-306.
  • 10Rockafeller T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3): 21-24.

共引文献75

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部