期刊文献+

鲁棒预测迭代学习控制在间歇过程中的运用 被引量:2

Robust Predictive and Iterative Learning Control as Applied to Batch Process
原文传递
导出
摘要 考虑间歇反应中存在的非线性、实际情况中的输入输出约束要求和扰动的重复特性和非重复特性,将采用迭代学习和预测控制相结合的方法设计控制器,使得系统输出跟踪给定参考轨迹,最终使得间歇反应能够满足产品质量要求.由于迭代学习控制系统从本质上看汇聚了时间和批次两个变量,故可称为2维系统.针对2维系统,采用李亚普诺夫函数确保系统的稳定性并得到系统的控制序列,上述的控制序列可通过求解线性矩阵不等式求得.为了验证算法的有效性,将上述控制算法应用在对连续搅拌釜(CSTR)温度期望轨迹的跟踪控制中,仿真结果表明了控制算法的有效性. Batch processes can be nonlinear,are prone to repetitive and non-repetitive disturbances,and often have input and output constraints.Iterative learning and predictive control are used to design a controller that makes system outputs track a given set-point profile.Now,despite non-linearities,disturbances,and con-straints,batch reactors can satisfy their production requirements.Iterative learning control systems contain two variables,time and batch,and so can be regarded,in essence,as two-dimensional systems.A Lyapunov function is used to stabilize these systems and LMIs (linear matrix inequalities)are used to optimize their control actions.A continuous stirred-tank reactor (CSTR)model,tracking a given reference temperature traj-ectory,isutilized to illustrate the effectiveness of the proposed control method.
出处 《信息与控制》 CSCD 北大核心 2015年第2期129-134,共6页 Information and Control
基金 国家自然科学基金资助项目(NSFC61273087) 江苏省基础研究计划(自然科学基金)资助项目(BK2012111) 江苏高校优势学科建设工程资助项目
关键词 2D (2 dimensional)Rosser系统 迭代学习控制 预测控制 间歇过程 2D (2 dimensional)Rosser system iterative learning control predictive control batch process
  • 相关文献

参考文献1

二级参考文献29

  • 1Korovessi, E., Linninger, A.A., Batch Processes, CRC/Taylor and Francis, Boca Raton, FL (2006).
  • 2Anon., “Automatic control of batch-process temperature”, Food Ind., 8 (5), 237-244 (1936).
  • 3Yu, J., Qin, S.J., “Multiway Gaussian mixture model based umltiphase batch process monitoring”, Ind. Eng. Chem. Res., 48, 8585-8594 (2009).
  • 4Zhao, C.H., Mo, S.Y., Gao, F.R., Lu, N.Y., Yao, Y., “Statistical analysis and online monitoring for handling multiphase batch processes with varying durations”, Journal of Process Control, 21, 817-829 (2011).
  • 5Ye, D., Yang, G.H., “Delay-dependent reliable H∞ control for linear time-varying delay systems via adaptive approach”, American Control Conference, 3991-3996 (2007).
  • 6Wang, Y.Q., Zhou, D., Gao, F., “Iterative learning fault-tolerant control for batch processes”, Ind. Eng. Chem. Res., 45, 9050-9060 (2006).
  • 7Wang, Y.Q., Zhou, D., Gao, F., “Iterative learning reliable control of batch processes with sensor faults”, Control Engineering Science, 63, 1039-1051 (2008).
  • 8Wang, Y.Q., Zhou, D., Gao, F., “Active fault-tolerant control of nonlinear batch processes with sensor faults”, Ind. Eng. Chem. Res., 46, 9158-9169 (2007).
  • 9Gao, F., Yang, Y., Shao, C., “Robust iterative learning control with applications to injection molding process”, Chem. Eng. Sci., 56, 7025-7034 (2001).
  • 10Xiong, Z., Zhang, J., “Product quality trajectory tracking in batch processes using iterative learning control based time-varying perturbation models”, Ind. Eng. Chem. Res., 42 (26), 6802-6814 (2003).

共引文献10

同被引文献23

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部