期刊文献+

基于PCA和LMD分解的滚动轴承故障特征提取方法 被引量:7

Feature Extraction Method of Rolling Bearing Fault Based on Principal Component Analysis and Local Mean Decomposition
下载PDF
导出
摘要 局部均值分解(LMD)是一种自适应时频分析方法,并在轴承的故障诊断中成功应用,但是受噪声的影响比较大。为了最大程度地降低噪声的干扰,提出了主分量分析(PCA)与局部均值分解(LMD)相结合的故障诊断方法。该方法首先利用相空间重构将一维时间序列振动信号嵌入为等效的多维时间序列信号,然后利用主分量分析提取主要成分实现降噪,最后把降噪之后的信号进行LMD分解,分解成若干个乘积函数(PF)之和,对能量最高的PF1进行包络谱分析,提取出故障特征信息。通过仿真试验和轴承故障试验,结果表明该方法能够有效地提取出信号的故障特征,证明了该方法的有效性。 Local mean decomposition(LMD) is an adaptive time-frequency analysis method,which is successfully used in roll- ing bearing fault diagnosis but strongly influenced by noise.In order to reduce the noise interference to the greatest extent, a fault di- agnosis method based on principal component analysis (PCA) and local mean decomposition(LMD) was proposed.Firstly, one-di- mension time series vibration signals were embedded to equivalent multi-dimensions through the reconstructed phase space.Then, a- vailable component was extracted by PCA ,achieving the effect of noise reduction.Finally,the de-noised signal was decomposed by LMD and can be represented as the sum of the product functsons.The component PF1 which contains the highest power was select- ed to conduct the envelope spectrum analysis and the fault features were exacted.The results show that the method can effectively extract the fault features through the analysis of the simulation signal and the roiling bearing fault diagnosis data experiment, pro- ving the effectiveness of the proposed method.
机构地区 武汉科技大学
出处 《仪表技术与传感器》 CSCD 北大核心 2015年第4期76-78,99,共4页 Instrument Technique and Sensor
基金 国家自然科学基金青年基金资助项目(51105284) 湖北省高校优秀中青年创新团队计划(T200905)资助
关键词 相空间重构 主分量分析 LMD 特征提取 reconstructed phase space PCA LMD feature extraction
  • 相关文献

参考文献10

二级参考文献37

共引文献28

同被引文献80

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:86
  • 2张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 3WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [ J ].Proceedings of the Royal Society A, 2004, 460(2046) : 1579-1611.
  • 4WU Z H, HUANG N E. Ensemble empirical mode decompo- sition: a noise-assisted data analysis method [ C ].// Advances in Adaptive Data Analysis,2009: 1-41.
  • 5DEMPSTER A P. Upper and low probabilities induced by a muhivalued mapping [ J ]. Annuals of Mathematical Statistical, 1967,38(6) :325-339.
  • 6SHAPER G. A mathematical theory of evidence[ M] .Prince- ton : Princeton University Press, 1976.
  • 7PLATT J. Probabilistic outputs for support vector machines and comparison to regularized likelihood method [ J ]. Advance in Large Margin Classifier, 1999,10(3) : 61-74.
  • 8CHANG C C, LIN C J. LIBSVM : a library for support vec- tor machines [J].ACM Transactions on Intelligent Systems and Technology, 2011,2(3) : 389-396.
  • 9吴祥海,樊丽霞,石晓晶,孙海波.漫谈自动武器测试技术[J].测试技术学报,1997,11(3):35-42. 被引量:4
  • 10苏文胜,王奉涛,张志新,郭正刚,李宏坤.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21. 被引量:253

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部