期刊文献+

作业安全管控系统中人员目标识别算法研究 被引量:3

Study on Human Object Identification algorithm in Working Safety Supervision and Control System
下载PDF
导出
摘要 为提高无人值守变电站现场作业安全监督管理水平,对作业安全管控系统中人员目标识别算法进行了研究。在传统算法的基础上,从移动目标捕捉和目标定位、目标分割、人员目标识别三个方面进行算法研究,并根据变电站实际环境对算法进行适用性改进。实验数据表明,不考虑复杂背景的情况下,单人员识别算法的识别率很高,但在目标重叠、目标被部分遮挡、有人影、有积水倒影等情况下,识别率有所下降。人员目标识别算法的实用化研究为无人值守变电站的作业安全管控提供了技术基础。 In order to improve the field working safety supervision and management level in unattended substation, the human object identification algorithm in working safety supervision and control system is studied. Based on the traditional algorithm, the algorithm are studied from three respects including the capturing and locating of moving object, the dividing of object and the personnel object identification, and the applicability of the algorithm is modified according to the actual environment of substation. Test data show that the identification rate of single person is very high under the circumstance of not considering complicated background, but the identification rate is decreased under circumstances of the overlap of object, the partial occlusion of object, the shadow of person and the water reflection. The practical study of human object identification algorithm provide technical basis for the working safety supervision and control in unattended substation.
出处 《广西电力》 2015年第2期6-10,共5页 Guangxi Electric Power
关键词 人员目标识别算法 作业安全管控系统 识别率 human object identification algorithm working safety supervision and control system identification rate
  • 相关文献

参考文献10

  • 1张光清.移动目标检测技术的研究[J].中国科技博览,2011(27):233-233. 被引量:2
  • 2C.Papageorgiou, T.Poggio.A Pattern Classification Ap- proach to Dynamical Object Detection[J].Proceedings of IC- CV, 1999, 1223-1228.
  • 3吴炯,张秀彬,张峰,门蓬涛,孙志旻.移动目标的快速识别算法[J].微计算机信息,2004,20(3):27-28. 被引量:8
  • 4LIN Chun Fu, WANG Sheng De.Fuzzy Support Vet.t(" Ma- ('hines, IEEE Traus[J].On Neural Networks, 2002, 13 ( 2 ) : 464-471.
  • 5V.A.Anisimov, N.Gotsky.Fast hierachical matching of an ar- bitrarily oriented template[J].Pattern Recoguiti~m I,etters, 1993, 14(2) ;95-101.
  • 6Francesc~ Hiccland David. W.Aha.F, rror Correcting Outpul Codes for local Leamers[Jl.Chenitz Gernmny, 1998: 21-24.
  • 7J.Westonand, C.Watkins.Support vector mat.hines for multi-class pattern recognition[J].ln Pro~'eedings of 7th Eu- ropean Symposium on Allitiial Neural Nttwl'ks ( ESANN' 99): 219-224.
  • 8J.C.Plat, N.Cristianini, and J.Shawe Taylor.l,arge margin DAGs for muhiclass classification.In S.A.Solla, T.K.l,een, and K.R.Muller, editors.Advances in Neural hlflrmatim Processing Systems 12:547-553.
  • 9B.Kijsirikul and N.Ussivakul.Muhilass supporl wclor ma- chines using adaptive directed aw'li( graph.hi Proed- ings of International Joinl Coniren (m Neural Nqworks (IJCNN2002):980-985.
  • 10肖行诠,徐亮,吴天明,杨伟群.贝叶斯目标跟踪技术在变电站作业管控中的应用研究[J].华东电力,2014,42(3):510-515. 被引量:3

二级参考文献17

  • 1金明华,董再励,朱枫.一种多目标快速识别的自适应灰度量化方法研究[M].北京:机械工业出版社.2003.77-78.
  • 2李德骏.智能小区安防实时视频图像跟踪系统的研究[M].北京:信息技术出版社.2005.44-47.
  • 3朱晓荣.数字图像处理及应用研究[M].河南:河南大学出版社.2001.35-36.
  • 4田鹤.视频监控系统中基于编码域的运动检测方法[M].上海:计算机工程出版社.2002.26-28.
  • 5YILMAZ A, JAVED O, SHAH M. Object tracking: a survey [J]. ACM Computing Surveys, 2006, 38(4) : 1-45.
  • 6COLLINS R T, LIU Y, LEORDEANU M. Online selection of discriminative tracking features [ J ]. IEEE Trans. PAMI, 2005, 27(10) : 1631-1643.
  • 7AVIDAN S. Ensemble Tracking, IEEE Trans. PAMI, 2007, 29(2) : 261-271.
  • 8TIAN M, ZHANG W, LIU F. On-line ensemble SVM for ro- bust object Tracking[J]. Proc. ACCV, 2007( 1 ) : 355-364.
  • 9GRABNER H, GRABNER M, BISCHOF H. Real-time track- ing via on-line boosting[J]. Proc. BMVC, 2006(1) : 47-56.
  • 10MALLAPRAGADA P K, JIN R, JAIN A K. SemiBoost: boosting for semi-supervised learning[J]. IEEE Trans. PA- MI, 2009, 31(11) : 2000-2014.

共引文献10

同被引文献20

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部