期刊文献+

姿势内核学习融合决策森林在线手势识别算法 被引量:1

Online Gesture Recognition Algorithm Based on Fusion of PKL and Decision Forests
下载PDF
导出
摘要 针对在线姿势识别中来自流行深度传感器的噪声数据影响识别鲁棒性的问题,提出了一种基于姿势内核学习融合决策森林方法。首先,将使用骨架关节角表示每种姿势;然后,利用多类SVM分类器获得姿势内核;最后,利用决策森林实时标记关键姿势序列,根据关键姿势序列完成识别。实验结果表明,本方法的识别率可高达99.3%,相比几种较为先进的识别方法,本文方法具有更好的识别鲁棒性,并且在一定程度上降低了识别所耗时间。 For the issue that noisy data from popular depth senso∽ will impact recognition robustness in online gesture recognition, a method based on fusion of pose kernel learning and decision forests is proposed. Firstly, each pose is described using an angular representation of the skeleton joints. Then, SVM classifier with multiple classes is used to get pose kernel. Finally, decision forests are used to label key pose sequence in real time, and recognition is finished by key pose sequence. The experimental results show that the recognition accuracy of proposed method can achieve at 99.3%, it has better recognition robustness and less recognition time than several other state-of-the-art approaches.
出处 《电视技术》 北大核心 2015年第9期129-134,145,共7页 Video Engineering
基金 河南省科技厅科技发展计划项目(134300510037)
关键词 在线姿势识别 姿势内核学习 关节角表示 决策森林 多类SVM分类器 online gesture recognition poses kernel learning joint angle said decision forests SVM classifier with muhiple classes
  • 相关文献

参考文献14

  • 1VIEIRA A W,LEWINER T,SCHWARTZ W R, et al. Distance ma- trices as invariant features for classifying MoCap data [ C ]//Proc. 21st International CoLference on Pattern Recognition, 2012 . [ S. I. ] :IEEE Press, 2012:2934-2937.
  • 2JIN S Y, CHOI H J. Clustering space-time interest points for action representation [ C ]//Prec. the Sixth International Conference on Ma- chine Vision, 2013. London,UK : [s. n. ] ,2013:1-5.
  • 3杨波,宋晓娜,冯志全,郝晓艳.复杂背景下基于空间分布特征的手势识别算法[J].计算机辅助设计与图形学学报,2010,22(10):1841-1848. 被引量:52
  • 4OH .I, KIM T,HONG H. Using Binary Decision Tree and Mukiclass SVM for Human Gesture Recognition [ C ]//Pruc. the International Confcrencc of Information Science and Applications. [ S. 1. ] : IEEE Press, 2013: 1-4.
  • 5XIA L, CHEN C C, AGGARWAL J K. View invariant human ac- tion recognition using histograms of 3d joints [ C ]//Proc. Computer Society Conference Computer Vision and Pattern Recognition Work- shops. IS. 1. ] :IEEE Press, 2012: 20-2"7.
  • 6RAPTIS M, KIROVSKI D, HOPPE H. Real-time classification of dance gestures from skeleton animation [ C ]//Proc. the 2011 ACM SIGGRAPH. HK,China: [ s. n. ] ,2011 : 147-156.
  • 7VIEIRA A W, NASCIMENTO E R, OLIVE1RA G L, et al. Stop: Space-time occupancy patterns for 3d action recognition from depth mp sequences[ C ]//Proc. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. [ S. 1 ] : Springer Berlin Heidelberg, 2012: 252-259.
  • 8YANG X, ZHANG C, TIAN Y. Recognizing actions using depth motion maps- based histograms of oriented gradients [ C ]//Proc. Proceedings of the 20th ACM international conference on Multime- dia,2012. HK,China: [ s. n. ] ,2012: 1057-1060.
  • 9邓瑞,周玲玲,应忍冬.基于Kinect深度信息的手势提取与识别研究[J].计算机应用研究,2013,30(4):1263-1265. 被引量:44
  • 10NI B, WANG G, MOULIN P. Rgbd-hudaact: A color-depth video database for human daily activity recognition [ M ] London : Consum- er Depth Cameras for Computer Vision, 2013.

二级参考文献32

  • 1郭兴伟,葛元,王林泉.基于形状特征的字母手势的分类及识别算法[J].计算机工程,2004,30(18):130-132. 被引量:11
  • 2陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 3张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 4Liu Y, Gan Z J, Su Y. Static hand gesture recognition and its application based on support vector machines [C] // Proceedings of the 9th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Phuket, 2008:517-521.
  • 5Park H S, Kim E Y, Jang S S. HMM-based gesture recognition for robot control [M]//Lecture Notes in Computer Science. Heidelberg: Springer, 2005, 3522: 607-614.
  • 6Liu H, Feng S Q, Zha H B, et al. Document image retrieval based on density distribution feature and key block feature [C] //Proceedings of the 8th International Conference on Document Analysis and Recognition. Washington D C: IEEE Computer Society Press, 2005:1040-1044.
  • 7王修晖,鲍虎军.基于自适应遗传算法的手势识别[J].计算机辅助设计与图形学学报,2007,19(8):1056-1062. 被引量:16
  • 8阮秋琦.数字图像处理学[M].北京:电子工业出版社,2000..
  • 9丁津津.TOF三维摄像机的误差分析及补偿方法研究[D].合肥:合肥工业大学,2011.
  • 10Xu Xiaping, Jiang Jiafu. Study of head recognition based on biomimetic pattern recognition in complicat- ed traffic environment[C]///7th International Confer- ence on Natural Computation. Piscatway: IEEE Computer Society, 2011: 242-246.

共引文献97

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部