期刊文献+

一类比例依赖的捕食系统局部能控性及最优控制 被引量:3

Locally Controllability and Optimal Control of a Ratio-dependent Predator-prey System
下载PDF
导出
摘要 研究了一类比例依赖的捕食模型正平衡态的局部能控性及最优控制问题.通过分析的方法并借助Kalman秩条件得到了该模型正平衡态局部能控的充分条件,并用具体的例子进一步验证了结论的正确性.同时证明了相应的最优控制问题最优对的存在性,并利用庞德里亚金最小值原理证明了最优控制必为Bang-Bang控制. The locally controllability of positive equilibrium and optimal control problem of a ratio-dependent pred- ator-prey system were investigated. Based on analysis techniques and Kalman rank condition, the sufficient conditions for locally controllability of the positive equilibrium of the model were obtained. Besides, a specific example was of- fered to confirm the obtained results. Meanwhile, the optimal control was proved to be of Bang-Bang form by Pontryagin minimum principle.
作者 向会立 王刚
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2015年第2期160-162,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11261017) 教育部科学技术研究重点项目(212111)
关键词 捕食系统 局部能控性 充分条件 最优控制存在性 BANG-BANG控制 predator-prey system locally controllability sufficient conditions existence of optimal control Bang-Bang control
  • 相关文献

参考文献7

  • 1Kar T K,Misra S,Mukhopadhyay B.A bioeconomic model of a ratio-dependent predator-prey system and optimal harvesting[J].Applied Mathematics&Computing,2006,22(1/2):387-401.
  • 2Berryman A A.The origins and evolution of predator-prey theory[J].Ecology,1992,73(5):1530-1535.
  • 3Xiang H L,Liu Z J.The optimal control and MLE of parameters of a stochastic single-species system[J].Discrete Dynamics in Nature and Society,2012,ID 676871,12.
  • 4Liu X N,Chen L S.Global behaviors of a generalized periodic impulsive logistic system with nonlinear density dependence[J].Communications in Nonlinear Science and Numerical Simulation,2005,10(3):329-340.
  • 5Liu Z J,Chen Y P,He Z R,et al.Permanence in a periodic delay logistic system subject to constant impulsive stocking[J].Mathematical Methods in the Applied Sciences,2010,33(8):985-993.
  • 6杨金根,张俊艺.一类具饱和传染率和脉冲接种的传染病模型[J].信阳师范学院学报(自然科学版),2013,26(4):489-492. 被引量:6
  • 7张俊艺,曹文营,赵中.一类时滞生态经济微分代数系统的建模与分析[J].信阳师范学院学报(自然科学版),2014,27(3):319-322. 被引量:1

二级参考文献12

  • 1柳合龙,徐厚宝,于景元,朱广田.带有脉冲免疫和传染年龄的传染病模型的全局吸引性[J].应用泛函分析学报,2005,7(3):280-288. 被引量:3
  • 2Martin A, Ruan S. Predator-prey models with delay and prey harvesting [ J ]. Math Biol,2001, 43:247-267.
  • 3Zhang G D, Shen Y, Chen B S. Positive periodic solutions in a non-selective harvesting predator-prey model with multiple delays [ J ]. J Math A- nal Appl,2012, 395:298-306.
  • 4Gordon I4 S. The economic theory of a common property resource : the fishery [ J ]. J Polit Ecol, 1954,62 : 124-142.
  • 5Zhang G D, Zhu L L, Chen B S. Hopfbifitrcation and stability for a differential-algebraic biological economic system [J]. Appl Math Comput, 2010, 217:330-338.
  • 6Zhang G D, Zhu L L, Chen B S. Hopf bifurcation in a delayed differential-algebraic biological economic system [ J ]. Nonlinear Anal:RWA, 2011, 12:1708-1719.
  • 7Zhang X, Zhang Q L, Zhang Y. Bifurcations of a class of singular biological economic models [ J]. Chaos Soliton Fraet,2009, 40:1309-1318.
  • 8Chen B S, Liao X X, Liu Y Q. Normal forms and bifurcations for the differential-algebraic systems [ J]. Aeta Math Sin,2000, 23:429-433.
  • 9Hassard B, Kazarinoff D, Wan Y. Theory and Applications of Hopf bifurcation [ M ]. Cambridge:Cambridge University Press, 1981.
  • 10杨金根,郭建立.具有脉冲接种和急慢性阶段的流行病动力学研究[J].信阳师范学院学报(自然科学版),2010,23(4):485-487. 被引量:1

共引文献5

同被引文献28

  • 1Kar T K,Batabyal A.Persistence and stability of a two prey one predator system[J].Eng Sci Technol,2010,2(2):174-190.
  • 2Hou J,Teng Z D,Gao S J.Permanence and global stability for nonautonomous N-species Lotka-Valterra competitive system with impulses[J].Nonlinear Analysis:Real world Applications,2010,11(3):1882-1896.
  • 3Liu M,Wang K.Dynamics of a two-prey one-predator system in random environments[J].AIP Conf Proc,2013,23(5):751-775.
  • 4Xiang Z Y,Long D,Song X Y.A delayed Lotka-Volterra model with birth pulse and impulsive effect at different moment on the prey[J].Applied Mathematics and Computation,2013,219(20):10263-10270.
  • 5Jana S,Ghorai A,Guria S,et al.Global dynamics of a predator,weaker prey and stronger prey system[J].Applied Mathematics and Computation,2015,250(1):235-248.
  • 6Nie L F,Teng Z D,Hu L,et al.Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects[J].Nonlinear Analysis:Real World Applications,2010,11(3):1364-1373.
  • 7Jana D,Agrawal R,Upadhyay R K.Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain[J].Chaos,Solitons and Fractals,2014,69:50-63.
  • 8Karaoglu E,Merdan H.Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays[J].Chaos,Solitons and Fractals,2014,68:159-168.
  • 9Tripathi J P,Abbas S,Thakur M.Local and global stability analysis of two prey one predator model with help[J].Commun Nonlinear Sci Numer Simulat,2014,19(9):3284-3297.
  • 10BRAVERMAN E,MAMDANI R.Continuous versus pulse harvesting for population models in constant and variable environment[J].Journal of Mathematical Biology,2008,57(3):413-434.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部