期刊文献+

面向机器人室内建图的RGB-D图像对齐算法 被引量:6

An RGB-D Image Alignment Algorithm for Robotic Mapping in Indoor Environments
原文传递
导出
摘要 面向服务机器人使用廉价的RGB-D摄像头自主构建室内3维地图的需求,提出一种鲁棒的图像对齐方法.基于特征点的匹配集计算帧间变换,使用随机抽样一致算法(RANSAC)消除误配,并改变其内点计数策略以适应特征点空间分布不均;同时检测地面信息,利用共面约束来增强点集对齐.在机器人从真实室内环境中采集的RGB-D图像序列上进行了实验,帧间对齐错误率为0,全局地面误差不超过2 cm;3维建图过程准确且能够连续进行.结果表明使用地面信息能有效提高地图的全局精度,方法兼备鲁棒性和准确性. A robust RGB-D image alignment method is proposed for autonomously building 3D maps for a service robot equipped with inexpensive RGB-D cameras. The transformation between frames is calculated based on matched sets of feature points, and the RANdom SAmpling Consensus (RANSAC) algorithm is used to eliminate false matchings, and the algorithm's inlier counting policy is modified to adapt to spatial nonuniformity of feature points. Meanwhile, floor informa- tion is detected and the coplanar constraint is used to enhance alignment of point sets. Experiments are conducted on RGB-D image sequence collected by robot in a real indoor environment. The error rate of frame-to-frame alignment is zero, and the global floor error is less than 2 cm. The 3D mapping process can be implemented accurately and continuously. Results show that the floor information can effectively improve the global precision of the map, and the method is robust and accurate.
出处 《机器人》 EI CSCD 北大核心 2015年第2期129-135,共7页 Robot
基金 国家863计划资助项目(2008AA01Z150) 国家自然科学基金资助项目(60745002 61105039 61175057)
关键词 RGB-D建图 自主建图 图像对齐 地面检测 服务机器人 RGB-D mapping autonomous mapping image alignment floor detection service robot
  • 相关文献

参考文献15

  • 1May S, Droeschel D, Holz D, et al. Three-dimensional mapping with time-of-flight cameras[J]. Journal of Field Robotics, 2009, 26 (11): 934-965.
  • 2Konolige K, Agrawal M. Three-dimensional mapping with time-of-flight cameras[J]. IEEE Transactions on Robotics, 2008, 24 (5): 1066-1077.
  • 3Clemente L A, Davison A J, Reid I D, et al. Mapping large loops with a single hand-held camera[C]//Robotics: Science and Systems. 2007.
  • 4Henry P, Krainin M, Herbst E, et al. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. International Journal of Robotics Research, 2012, 31(5): 647-663.
  • 5Newcombe R A, Davison A J, Izadi S, et al. KinectFusion: Realtime dense surface mapping and tracking[C]//IEEE International Symposium on Mixed and Augmented Reality. Piscataway, USA: IEEE, 2011: 127-136.
  • 6Whelan T, Johannsson H, Kaess M, et al. Robust real-time visual odometry for dense RGB-D mapping[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 5724-5731.
  • 7杨扬,曹其新,朱笑笑,陈培华.面向机器人手眼协调抓取的3维建模方法[J].机器人,2013,35(2):151-155. 被引量:8
  • 8Acharya P K, Henderson T C. Parameter estimation and error analysis of range data[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1988: 1709-1714.
  • 9Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
  • 10Lucas B D, Kanade T, et al. An iterative image registration technique with an application to stereo vision[C]//International Joint Conference on Artificial Intelligence. New York, USA: ACM, 1981: 674-679.

二级参考文献9

  • 1Furukawa Y, Curless B, Seitz S M, et al. Towards Internet- scale multi-view stereo[C]//23rd IEEE Conference on Com- puter Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 1434-1441.
  • 2Henry E Krainin M, Herbst E, et al. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. International Journal of Robotics Research, 2012, 31(5): 647-663.
  • 3Izadi S, Kim D, Hilliges O, et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth cam- era[C]//24th Annual ACM Symposium on User Interface Soft- ware and Technology. New York, NY, USA: ACM, 2011: 559- 568.
  • 4Krainin M, Henry P, Ren X F, et al. Manipulator and object tracking for in-hand 3D object modeling[J]. International Jour- nal of Robotics Research, 2011, 30(11): 1311-1327.
  • 5Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
  • 6Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 7Lowe D G. Distinctive image features from scale-invaxiant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 9Ozuysal M, Calonder M, Lepetit V, et al. Fast keypoint recogni- tion using random ferns[J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2010, 32(3): 448-461.

共引文献7

同被引文献40

  • 1杜娟,李文锋.基于金字塔连接算法的彩色图像分割[J].武汉理工大学学报,2006,28(1):112-114. 被引量:10
  • 2李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 3曾慧,邓小明,赵训坡,胡占义.基于线对应的单应矩阵估计及其在视觉测量中的应用[J].自动化学报,2007,33(5):449-455. 被引量:10
  • 4DUAN Y N,CHEN W, WANG M ZH. A relative radiometric correction method for airborne image u sing outdoor calibration and image statistics [J]. IEEE Transaction on Geoscience and Remote Sens- ing, 2014, 52(8): 5164-5174.
  • 5ZARAGOZA J, CHIN T J, TRAN Q H. As-pro- jective-as-possible image stitching with moving DLT [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (7) : 1285-1298.
  • 6HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision M]. 2nd Edition.Cambridge:Cambridge University Press, 2004,87- 129.
  • 7HARTLEY R. In defense of the eight-point algo- rithm [J]. IEEE Transactions o,1 Pattern Analysis and Machine lntelligenc'e, 1997, 19(6): 580 593.
  • 8FISCHI.ER M A, BOLI.ES R C. Random sample consensus., a paradigm for model fitting with appli- cations to image analysis and automated cartogra- phy [J]. Communications of the ACM, 1981, 24 (6) :381-395.
  • 9ROUSSEEUW P J. Least median of squares regres- sion [J]. Journal of the American Statistical As- sociation, 1984, 79(388): 871-880.
  • 10YAN Q, XU Y, YANG X K. HEASK: robust homography estimation based on appearance simi- larity and keypoint correspondences [J]. Pattern Recognition, 2014, 47(1): 368-387.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部