期刊文献+

仿海蟹机器人浮游步态动力学建模与运动控制 被引量:5

Dynamic Modeling and Motion Control of a Crablike Robot in Floating Gait
原文传递
导出
摘要 为实现足桨耦合推进仿海蟹机器人在未知海流扰动作用下对目标点的跟踪控制,对仿海蟹机器人浮游步态的动力学和运动控制进行研究.综合考虑重力、浮力、游泳足拍动产生的推力以及水动力的影响,建立了仿海蟹机器人水下复杂环境的动力学模型.在此基础上,设计了一种基于指数趋近律的滑模变结构控制器,将游泳足上下拍翼运动和摇翼运动的相位差作为被控量,对机器人的转艏角速率进行控制.通过李亚普诺夫直接法,证明该系统可实现全局渐近稳定.最后进行了单一目标点和多目标点跟踪运动仿真和实验,结果表明:该方法可以使机器人具有良好的目标点跟踪能力,并对系统动力学参数不确定性及外界扰动具有较高鲁棒性. Investigations on dynamics and motion control for a crablike robot in floating gait are conducted, in order to achieve the waypoint-tracking control of the leg-paddle coupling crablike robot disturbed by unknown current and flow. Firstly, dynamic model of the robot subject to complex underwater environment is established with consideration of the effects of the gravity, the buoyancy, the thrust produced by the swimming leg and the hydrodynamic force. On this basis, a sliding mode variable structure controller based on exponential approach law is designed. The phase difference between the flapping motion and the feathering motion is taken as the controlled variable to achieve the yaw rate control. And the globally asymptotic stability of the control system is proved by the Lyapunov direct method. Simulations and experiments of single and multiple target tracking are carried out, and the results show that the presented controller has strong waypoint tracking ability and robustness against the variations and disturbances of the system dynamics.
出处 《机器人》 EI CSCD 北大核心 2015年第2期176-187,共12页 Robot
基金 国家自然科学基金资助项目(60875067) 国家自然科学基金青年基金资助项目(51409058) 黑龙江省自然科学基金资助项目(F201205)
关键词 足桨耦合 仿海蟹机器人 游泳足 水翼推进 目标点跟踪 leg-paddle coupling crablike robot swimming leg hydrofoil propulsion waypoint tracking
  • 相关文献

参考文献4

二级参考文献21

  • 1Tuong Quan Vo,Hyoung Seok Kim,Byung Ryong Lee.Propulsive Velocity Optimization of 3-Joint Fish Robot Using Genetic-Hill Climbing Algorithm[J].Journal of Bionic Engineering,2009,6(4):415-429. 被引量:6
  • 2谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现[J].机器人,2006,28(5):525-529. 被引量:15
  • 3章永华,何建慧,张世武,董二宝,杨杰.NiTi形状记忆合金驱动的仿生鱼鳍的研究[J].机器人,2007,29(3):207-213. 被引量:9
  • 4Maciver M A, Fontaine E, Burdick J W. Designing future under- water vehicles: principles and mechanisms of the weakly electric fish. IEEE J Oceanic Eng, 2004, 29 (3) : 651.
  • 5Yuh J. Design and control of autonomous underwater robots: a sur- vey. Auton Robots, 2000, 8 : 7.
  • 6Koh T H, Lau M W S, Seet G, et al. A control module scheme for an underactuated underwater robotic vehicle. J lntell Rob Syst, 2006, 46(1): 43.
  • 7Sedighizadeh M, Rezazadeh A. Adaptive PID controller based on rein- forcement learning for wind turbine controlZ/Proceedings of World Academy of Science, Engineering and Technology. Rome, 2008.
  • 8Boileau R, Fan L, Moore T. Mechanization of rajiform swimming motion: The making of Robo-Ray[R]. Vancouver, Canada: University of British Columbia, Engineering Physics Project Laboratory, 2002.
  • 9Clark R P, Smits A J. Thrust production and wake structure of a batoid-inspired oscillating fin[J]. Journal of Fluid Mechanics, 2005, 562: 415-429.
  • 10Low K H, Prabu S, Pattathil A R Initial prototype design and development of hybrid modular underwater vehicles[C]//IEEE International Conference on Robotics and Biomimetics. Picat- away, NJ, USA: IEEE, 2006:311-316.

共引文献23

同被引文献28

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部