期刊文献+

基于岩电参数和颗粒直径的渗透率模型在低孔隙度低渗透率储层中的应用

Application of the Permeability Model Derived from Petro-electrical Factors and Grain Diameters in Low Porosity and Low Permeability Formation
下载PDF
导出
摘要 基于RGPZ渗透率模型分析了岩石中电流导通性能、孔隙结构连通性和渗透率之间的相互关系,并用低孔隙度低渗透率储层的实际测井数据估算的颗粒直径和岩心岩电分析数据预测渗透率。在RGPZ渗透率计算模型中,考虑了反映岩石电流导通特性的地层因素F和表征孔隙结构弯曲度的胶结指数m,以及岩石颗粒直径,三者均可由电测井数据和/或实验分析得到。利用前人发表的多类实验数据和鄂尔多斯某探区的3口井实际测井资料验证了RGPZ渗透率计算模型有效性和对低孔隙度低渗透率储层的适应性,验证结果表明RGPZ渗透率计算模型预测的渗透率在没有微裂缝井段与实测渗透率吻合较好,但在微裂缝发育层段,需要考虑微裂缝对岩电参数的影响。 Based on RGPZ model, the relationship among current conduction performance, pore structure connectivity and permeability is analyzed in this study, and the field logging data of a formation with low porosity and low permeability are used to estimate the grain diameter which has been integrated with petro-electrical parameters to predict the RGPZ permeability. In the RGPZ permeability model, we consider formation factor F, which indicates the rock current conduction characteristics, and the cementation index m that reflects the pore structure tortuosity, and rock grain diameter, all these three parameters can be obtained from electric logs and/or experimental analysis. Many previous published experimental data and field data of three wells from one exploration area of Ordos basin, where there are petro-physical analysis data and petro-electrical data, are used to verify the adaptability and effectiveness of RGPZ permeability prediction model. The checked results show that the permeability of RGPZ model is in good agreement with the measured permeability in well section without the micro-cracks, but the effect of micro-cracks on petro-electrical parameters should be considered in the section of developed micro-cracks.
出处 《测井技术》 CAS CSCD 2015年第2期142-149,共8页 Well Logging Technology
关键词 岩电参数 渗透率 颗粒直径 毛细管压力 孔隙结构 连通性 petro-physical and petro-electrical parameter permeability grain diameter caliper pressure pore structure connectivity
  • 相关文献

参考文献23

  • 1Berg R R. Method for Determining Permeability from Reservoir Rock Properties [C] // Transactions of the Gulf Coast Association of Geological Societies, 1970: 303-317.
  • 2Kostek S, Schwartz L M, Johnson D L. Fluid Perme- ability in Porous Media, Comparison of Electrical Esti- mates with Hydrodynamical Calculations [J]. Physics Review: B, 1992, 45(1): 186-195.
  • 3Coates G R, Dumanoir J L. A New Approach to Im- proved Log Derived Permeability [J]. The Log Ana- lyst, 1974, 15: 17-23.
  • 4Coates G R, Peveraro R C A, Hardwick A, et al. The Magnetic Resonance Imaging Log Characterized by Comparison with Petrophysical Properties and Labora- tory Core Data [C] // Proceedings of the 66th Annual Technical Conference and Exhibition, SPE 22723, 1991 : 627-635.
  • 5Carman P C. Flow of Gases Through Porous Media [M]. Amsterdam: Elsevier Science Publishing Com- pany, Inc., 1956: 197-212.
  • 6Helle H B, Bhatt A, Ursin B. Porosity and Permea- bility Prediction from Wireline Logs Using Artificial Neural Networks: A North Sea Case Study [J]. Geo- physical Prospecting, 2001, 49(4): 431-444.
  • 7Carman P C. The Determination of the Specific Sur- faces of Powders I [J].Journal of the Society of the Chemical Industrialists, 1938, 57 : 225-234.
  • 8Van Baaren J P. Quick-look Permeability Estimates Using Sidewall Samples and Porosity Logs [C] // Transactions of the 6th Annual European Logging Symposium, Society of Petrophysicists and Well Log Analysts, 1979: 19-25.
  • 9Glover P W J, Zadjali I I, Frew K A. Permeability Prediction from MICP and NMR Data Using an Elec- trokinetic Approach[J]. Geophysics, 2006, 71(4): 49-60.
  • 10Nelson P H. Permeability-porosity Relationships in Sedimentary Rocks [J]. The Log Analyst, 1994, 35 (3) : 38-62.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部