期刊文献+

粒子群算法在砂砾岩体岩性识别中的应用 被引量:5

Application of Particle Swarm Optimization to Glutenite Lithology Identification
下载PDF
导出
摘要 针对砂砾岩地层岩性变化大、非均质性强、常规测井曲线影响因素多、砂砾岩地层地质特征与测井曲线呈现非线性关系等特点,采用支持向量机方法(SVM)对地层岩性进行划分。选用粒子群算法对支持向量机参数进行优化,得到岩性识别模型;根据模型对研究区的30多口井的岩性进行划分,取得良好的地质应用效果。 The glutenite stratum has many characteristics, such as the large lithology variation, strong heterogeneity, many influencing factors of the conventional logging curves, nonlinear relation of the glutenite formation geologic feature sand logging curves and so on. We divide the formation lithology with the support vector machine (SVM) method. The SVM parameters are optimized by the particle swarm optimization (PSO), then the lithology identification model is achieved. The lithology of more than 30 wells in the studied area is divided by this model with a better result.
出处 《测井技术》 CAS CSCD 2015年第2期171-174,共4页 Well Logging Technology
关键词 岩性识别 砂砾岩 支持向量机 粒子群算法 lithology identification glutenite support vector machine (SVM) particle swarm optimization(PSO)
  • 相关文献

参考文献7

二级参考文献50

共引文献394

同被引文献91

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部