期刊文献+

基于MCS-LBP的红外图像行人检测方法

Pedestrian Detection Method Based on MCS-LBP in Infrared Images
下载PDF
导出
摘要 红外图像行人检测是夜间智能视频监控、车辆辅助驾驶及智能驾驶等领域的关键技术。针对红外图像纹理特征较少的特点,提出一种实时的基于分块的多级中心对称局部二值模式(Multi-Level Center-Symmetric Local Binary Pattern,MCS-LBP)的红外图像行人检测方法。首先对红外图像进行去噪等预处理及感兴趣区域(regions of interest,ROIs)提取,并提取感兴趣区域的MCS-LBP特征得到更加丰富的红外图像纹理特征,最后使用支持向量机(support vector machine,SVM)进行分类得到行人检测结果。在VS2010环境下,在自行采集的红外行人数据集验证了该方法的有效性与鲁棒性。 Pedestrian detection in infrared images is one of the key technologies of night intelligent video surveillance, driver assistance, smart driving, and other areas. Aiming at the problems of less infrared image texture features, a real-time pedestrian detection method based on multi-level center block symmetry local binary pattern (MCS-LBP) in infrared images is proposed. In this method, first, we do denoising preprocessing and extract region of interest (ROI) of an infrared image. And the MCS-LBP is utilized to extract the richer texture features in regions of interest of the infrared image features get. Finally, using the support vector machine (SVM) to classify the test set to get results of obtained pedestrians. In Microsoft Visual Studio 2010 environment, we can demonstrate the effectiveness and robustness of the method on self-collected infrared pedestrian data set.
出处 《北京联合大学学报》 CAS 2015年第2期30-35,共6页 Journal of Beijing Union University
基金 国家自然科学基金项目(61271370) 北京市教委科技项目(CIT&TCD20130513) 2015年北京市启明星大学生科技创新项目(201511417SJ010)
关键词 红外图像 行人检测 多级中心对称局部二值模式 纹理分类 Infrared image Pedestrian detection Multi-Level Center-Symmetric Local Binary Pattern (MCS-LBP) Texture classification
  • 相关文献

参考文献13

  • 1苏松志,李绍滋,陈淑媛,蔡国榕,吴云东.行人检测技术综述[J].电子学报,2012,40(4):814-820. 被引量:159
  • 2许腾,黄铁军,田永鸿.车载视觉系统中的行人检测技术综述[J].中国图象图形学报,2013,18(4):359-367. 被引量:28
  • 3Gavrila D M, Giebel J. Shape-based pedestrian detection and tracking[ C ]//Intelligent Vehicle Symposium, IEEE, 2002: 8- 14.
  • 4Bertozzi M, Broggi A, Fascioli A,et al. Shape-based pedestrian detection [ C ]//Proc IEEE intelligent vehicles symposium 2000:215-220.
  • 5Curio C, Edelbrunner J, Kalinke T, et al. Walking pedestrian recognition[ C ]//IEEE intelligent vehicles symposium,2000: 155-163.
  • 6Zhao L, Thorpe C. Stereo and neural network based pedestrian detection[ C//IEEE intelligent vehicles symposium, 2000: 148-154.
  • 7Cutler R, Davis L S. Robust real-time periodic motion detection analysis and applications[ C ]//IEEE TPAMI, 2000:781- 796.
  • 8Biola P, Jones M, Snow D. Pedestrian using pattern of motions and appearance[ C]//IEEE conference on computer vision, 2003:734-741.
  • 9Fardi B, Schuenert U, Wanielik G. Shape and motion-based pedestrian detection in infrared images: AMuhi Sensor approach [ C]//IEEE intelligent vehicles symposium, 2005:18-23.
  • 10宋克臣,颜云辉,陈文辉,张旭.局部二值模式方法研究与展望[J].自动化学报,2013,39(6):730-744. 被引量:114

二级参考文献237

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Andrea F A, Miehele N, Daniel R, et ak 2D and 3D Face Recognition:A Survey [J]. Pattern Recognition Letters, 2007,28(14) : 1885-1906.
  • 4Wiskott L, Fellous J-M, Kruger N, et al. Face Recognition by Elastic Bunch Graph Mathing [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 775-779.
  • 5Ahonen T, Hadid A, Pietikainen M. Face Description with Local Binary Patterns: Application to Face Reeognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006,28(12) : 2037-2041.
  • 6Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Congnitive Neuroscienee, 1991,3 ( 1 ) :71-86.
  • 7Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. IEEE Trans on PAMI, 1997, 19(7) : 711-720.
  • 8Pentland A, Moghaddam B, Starner T. View-Based and Modular Eigenspaces for Face Recognition [C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition, 1994:84- 91.
  • 9Marko H, Matti P, Cordelia S. Description of Interest Regions with Center-Symmetric Local Binary Pattern[C]//Proc of Conf on Computer Vision Graphics and Image Processing, 2006 : 58-69.
  • 10Marcel S, Rodriguez Y, Heusch G. On the Recent Use of Local Binary Patterns for Face Authentication[J]. International Journal of Image and Video Processing, 2007:1-9.

共引文献310

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部