期刊文献+

大数据技术在指挥信息系统中应用 被引量:10

Big Data Techniques and Their Application in Command Information System
下载PDF
导出
摘要 介绍了大数据的发展背景和典型特征,综述了大数据框架、NoSQL、数据交换和数据挖掘等多种大数据技术。针对指挥信息系统的发展,提出了大数据技术在指挥信息系统中的应用思路,从而对提高我军指挥信息系统的知识化和智能化水平具有积极促进作用。 The background and features of big data are introduced. Several big data techniques, such as big data frameworks, NoSQL, data exchange, and data mining are surveyed. Aimed at the development of the command information system, the thoughts of applying big data tech- niques in command information systems are proposed. These thoughts can improve the knowl- edge and intelligence level of the command information system for our military.
出处 《指挥信息系统与技术》 2015年第2期10-16,共7页 Command Information System and Technology
关键词 大数据 指挥信息系统 MAPREDUCE框架 数据挖掘 big data command information system MapReduce framework data mining
  • 相关文献

参考文献11

  • 1维克托·迈尔-舍恩伯格,肯尼迪·库克耶.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013.
  • 2Dean J,Ghemawat S. MapReduce:simplified data pro- cessing on large clusters[C] // OSDI'04. San Francis- co.. [s. n. ] ,2004.
  • 3Zaharia M. Resilient distributed datasetsa fault-toler-ant abstraction for in-memory cluster computing[C]/// OSDI' 12. Berkeley : [ s. n. ], 2012.
  • 4Apache Spark Project. Spark documentation [EB/ OL]. [2015-02-01]. http://spark, apache, org/doeu- mentation, html.
  • 5Apache Storm Project. Storm Documentation [EB/ OL]. [-2015-02-01]. http://storm, apache, org/docu- mentation/home, html.
  • 6NoSQL[EB/OL]. [ 2015-02-01 ]. http://en, wikipe- dia. org/wiki/NoSQL.
  • 7Wu Xindong. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008,14 ( 1 ) : 1- 37.
  • 8余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:610
  • 9Quoc V L. Building high-level features using large seale unsupervised learning[C] // Proceedings of the 29th International Conference on Machine Learning. Edinburgh, Scotland : [ s. n. ], 2012.
  • 10周涛.大数据与APT攻击检测[J].信息安全与通信保密,2012(7):23-23. 被引量:23

二级参考文献27

  • 1仲勇,薛质.基于免疫的分布式入侵检测模型研究[J].信息安全与通信保密,2007,29(6):206-209. 被引量:2
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献709

同被引文献46

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部