期刊文献+

基于Hadoop的海量视频快速处理方法 被引量:2

Hadoop-Based Fast Massive Video Processing Method
下载PDF
导出
摘要 针对视频数据非结构化和体量大的特点,提出了一种基于Hadoop并发处理框架下的分片解码处理方法。该框架采用FFmpeg作为视频解码器,OpenCV作为图片处理引擎,对FFmpeg源码进行了修改和扩展,可在Hadoop环境下支持分片解码,从而实现海量视频的快速处理。同时,利用MapReduce细节处理功能寻求最佳分片大小,使得处理性能达到最优。人脸检测试验数据表明,8台4核机器上采用分片解码技术组成的Hadoop集群,比相同机器组的传统分布式集群处理速度提升了约45%。 Based on characteristics of large size and unstructured data of the digital video, an ex- tensible video processing framework is presented based on Hadoop to parallelize video processing tasks in a cloud environment. The framework uses FFmpeg for a video coder and OpenCV for an image processing engine to modify and expand the FFmpeg source code. It can support the frag- ment decoding in the Hadoop environment for realizing the rapid processing of massive video. It exploits MapReduce implementation details to minimize video image copy for optimizing the pro- cessing performance. A face recognizing system is implemented on top of the framework for the demonstration. In 8 4-core environment using fragment decoding in a Hadoop cluster with tradi- tional distributed scheduling environment, the system shows 45 % up of processing speed.
出处 《指挥信息系统与技术》 2015年第2期57-60,共4页 Command Information System and Technology
基金 软件新技术与产业化协同创新中心部分资助项目
关键词 Hadoop框架 视频处理 分片解码 Hadoop framework video processing fragment decoding
  • 相关文献

参考文献8

  • 1White T.Hadoop权威指南[M].3版.华东师范大学数据科学与工程学院,译.北京:清华大学出版社,2015.
  • 2Chen C H. Mohohan: an on line video transcoding service via apache hadoop[EB/OL]. [2015-01-30]. ht tp://www, gwms. com. tw/TREND HadoopinTaiwan 2012/1002download/C3. pdf.
  • 3杨帆,沈奇威.分布式系统Hadoop平台的视频转码[J].计算机系统应用,2011,20(11):80-85. 被引量:16
  • 4Kim M, Cui Y, Han S,et al. Towards efficient design and implementation of a hadoop-based distributed vide- o transeoding system in cloud computing environment[J]. International Journal of Multimedia and Ubiqui tous Engineering, 2013,8(2) .. 213-224.
  • 5Wilson R. x264farm:a distributed video encoder[EB/ OL]. [2015-01-30]. http://omion, dyndns, org/x264fa- rm/x264farm, html.
  • 6Garcia A, Kalva H, Furht B. A study of transcoding on cloud environments for video content delivery[C]// Proceedings of the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing. New York..ACM, 2010:13-18.
  • 7Labs H. Video Toon[EB/OL]. [2015-01-30]. http:// www. hpl. hp. corn/open innovation/cloud eollabora tion/cloud demo. html.
  • 8EasySchedule[EB/OL]. [2015-01-30]. http://github. corn/samueli/easyschedule.

二级参考文献15

  • 1Ahmad I, Wei XH, Sun Y, Zhang YQ. Video Transcoding: An Overview of Various Techniques and Research Issues. IEEE Trans. on Multimedia, 2005,7(5).
  • 2Barlas G A Taxonomy and DLT-based analysis of Clusterbased Video Trans/Encoding. 14th Euromicro International Conference on Parallel, Distributed, and Network-Based.Processing, PDP 2006,388-395.
  • 3Cardellini V, Colajanni M, Lancellotti R, Yu PS. A distribute1 architecture of edge proxy servers for cooperative trans1 coding. The 3rd IEEE Workshop on Interact Applications, 2003,66-70.
  • 4Guo JN, Bhuyan L. Load Sharing in a Transcoding Cluster. Distributed Computing, 2003,835.
  • 5Sambe Y, Watanabe S, Yu D, Nakamura T..Distributed video transcoding and its application to grid delivery. Proc. ITC-CSCC2003, 2003, 921-924.
  • 6Grio African American Breaking News and Opinion, http:llwww.thegrio.com/.
  • 7Grio African American Breaking News and Opinion, http://www.thegrio.com/.
  • 8Ghemawat S, GobioffH, Leung ST. The Google File System. 19th Symposium on Operating Systems Principles. Lake George, New York, 2003,29,43.
  • 9Hadoop Makes Sense of Lots of Data. http://www.enterp- risestorageforum.com/article.php/3890191/Hadoop-Makes- Sense-of-Lots-of-Data.htm.
  • 10Borthakur D. The Hadoop Distributed File System: Architecture and Design. http://hadoop.apache.org/core/ docs/current/hdfs-design.html, 2007.

共引文献15

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部