期刊文献+

高产吩嗪-1-甲酰胺的绿针假单胞菌的诱变与基因工程育种 被引量:2

Mutagenesis and Genetic Engineering Breed of Pseudomonas chlororaphis with High Yield of Phenaizne-1-Carboximade
下载PDF
导出
摘要 产量低是限制生物农药吩嗪-1-甲酰胺(Phenaizne-1-carboximade,PCN)推广应用的主要因素。本文综合使用诱变育种和基因工程改造来提高绿针假单胞菌的PCN产量。诱变育种使用亚硝基胍(NTG)和紫外线(UV)处理绿针假单胞菌HT66野生型菌株,以平板菌落表面的绿色PCN晶体量为指标建立高通量诱变筛选方法,通过10轮稳定可靠的诱变处理,获得的诱变高产株P3中PCN产量达到1 697mg/L,是野生菌株的3.99倍。在固体平板上培养时,P3菌株的菌落更大,PCN晶体更多且出现更早。在诱变育种的基础上进一步进行基因工程改造,敲除P3株中负调控PCN合成的rpeA基因,获得的P3ΔrpeA菌株PCN产量达到2 167mg/L,充分证明了2种育种方法结合使用的高效性。 The low production is the main barrier for phenaizne-1-carboximade(PCN)to be applied to agricultural process.In this paper,mutation breeding and genetic engineering breeding were combined to obtain the high yield PCN from Pseudomonaschlororaphisstrain HT66.In the mutation breed,strain P3 was obtained by crossing mutagenesis of the NTG and UV treatment from wild-strain.The highthroughput screening method was established by the amount of PCN crystals on the surface of colony.PCN production of strain P3 was 1697mg/L,which was 3.99 times more than strain HT66;The colony of the strain P3 was bigger with more and earlier PCN crystals on the surface.Genetic engineering was carried out on the basis of mutation breeding.The negative regulator to PCN biosyntheisis,rpeAin the strain P3 was eliminated.The PCN production of strain P3ΔrpeA was as much as 2 167 mg/L.It was proved that the combination of two breeding methods is more efficient.
出处 《上海交通大学学报(农业科学版)》 2015年第2期90-94,共5页 Journal of Shanghai Jiaotong University(Agricultural Science)
基金 国家自然科学基金(31270084) 国家973计划项目(2012CB721005) 国家863计划项目(2012AA022107)
关键词 绿针假单胞菌 PCN 诱变 基因敲除 Pseudomonas chlororaphis PCN mutagenesis gene knockout
  • 相关文献

参考文献10

  • 1Mavrodi D V,Parejko J A, Mavrodi O V, et al. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudornonasspp [J]. Envi- rotal Microbioly, 2013,15 (3) .. 675-686.
  • 2Chin-A-Woeng T F, Bloemberg G V, van der Bij A J, et al. Biocontrol by phenazine-l-carboxamide-produ- cing Pseudomonas chlororaphisPCL1391 of tomato root rot caused by Fusarium oxysporumf, sp. radicis- lycopersici [J]. Molecular Plant-Microbe Interactions, 1998,11(11) : 1069-1077.
  • 3Mavrodi D V,Bonsall R F, Delaney S M, et al. Func- tional analysis of genes for biosynthesis of pyocyanin and phenazinel-carboxamide from Pseudomonas aeruginosaPAO1 [J]. Journal of Bacteriology, 2001, 183(21) : 6454-6465.
  • 4Whistler C A,Pierson III L S. Repression of phena zine antibiotic production in Pseudomonas aureofa- ciensstrain 30-84 by RpeA [J]. Journal of Bacteriolo- gy, 2003,185 (13) : 3718-3725.
  • 5Huang L, Chen M-M,Wang W, et al. Enhanced pro- duction of 2-hydroxyphenazine in Pseudomonas chlo- roraphisGP72 [J]. Applied Microbiology and Biotech- nolog, 2011,89(1) .. 169-177.
  • 6Shen X, Hu H, Peng H ,et al. Comparative genomic a nalysis of four representative plant growth-promoting rhizobacteria in Pseudomonas [J]. BMC Genomics, 2013,14(1) .. 271.
  • 7Compant S, Clement C, Sessitsch A. Plant growth- promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biology and Bio- chemistry, 2010,42 (5) : 669-678.
  • 8吴巧琴,施松刚.工业微生物育种学[M].北京:科学出版社,2003.
  • 9汪杏莉,李宗伟,陈林海,刘晓波,谢慧波.工业微生物物理诱变育种技术的新进展[J].生物技术通报,2007,23(2):114-118. 被引量:30
  • 10宋安东,张沙沙,王风芹,谢慧,田原.基因敲除在工业微生物育种方面的应用[J].生物学杂志,2011,28(6):68-72. 被引量:5

二级参考文献75

共引文献33

同被引文献26

  • 1张锋华,许煜泉,张雪洪.农用杀菌剂吩嗪-1-羧酸的生物合成与基因调控[J].农药研究与应用,2006,10(5):4-7. 被引量:6
  • 2张云,胡洪波,彭华松,许煜泉,张雪洪.产PCA基因工程菌M18G反复补料分批培养研究[J].工业微生物,2007,37(2):16-20. 被引量:3
  • 3Han SH, Lee SJ, Moon JH, et al. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco[J]. Mol Plant-Microbe Interact, 2006, 19(8):924-930.
  • 4Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, et al. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici[J]. Mol Plant-Microbe Interact, 1998, 11(11):1069-1077.
  • 5Liu H, He Y, Jiang H, et al. Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere[J]. Curr Microbiol, 2007, 54(4):302-306.
  • 6Shen X, Hu H, Peng H, et al. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas[J]. BMC Genomics, 2013, 14(1):271.
  • 7Loper JE, Hassan KA, Mavrodi DV, et al. Comparative genomics of plant-associated Pseudomonas spp.:insights into diversity and inheritance of traits involved in multitrophic interactions[J]. PLoS Genet, 2012, 8(7):e1002784.
  • 8Park J, Oh S, Anderson A, et al. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose[J]. Lett Appl Microbiol, 2011, 52(5):532-537.
  • 9Maddula V, Pierson E, Pierson L. Altering the ratio of phenazines in Pseudomonas chlororaphis(aureofaciens)strain 30-84:effects on biofilm formation and pathogen inhibition[J]. J Bacteriol, 2008, 190(8):2759-2766.
  • 10Huang L, Chen MM, Wang W, et al. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72[J]. Appl Microbiol Biotechnol, 2011, 89(1):169-177.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部