期刊文献+

三维欧氏Steiner最小树的Delaunay四面体网格混合智能算法 被引量:1

A Hybrid Intelligent Algorithm Based on Delaunay Tetrahedron Mesh Generation for Euclidean Steiner Minimum Tree Problem in 3-space
下载PDF
导出
摘要 Steiner最小树问题是组合优化中经典的NP难题,在许多实际问题中有着广泛的应用,而三维欧氏Steiner最小树问题是对二维欧氏Steiner最小树问题的推广。由于三维欧氏Steiner树问题的求解非常困难,至今为止的相关成果较为少见。本文针对该问题,利用Delaunay四面体网格剖分技术,提出了一种混合型智能求解方法,不仅可以尽量避免拓扑结构陷入局部最优,且对较大规模的问题求解亦有良好的效果。算法在Matlab环境下编程实现,经实例测试,获得了满意的效果。 Euclidean Steiner minimum tree problem,a classical NP-hard problem in combination optimization,has been widely studied in many fields. Euclidean Steiner minimal tree problem in 3-space is the generalization of Euclidean Steiner minimum tree problem in 2-space. The research results on Euclidean Steiner minimal tree problem in 3-space have been rarely published because of their difficulties. In this paper,a hybrid intelligent method is designed by using Delaunay tetrahedron mesh generation technology to solve the Euclidean Steiner minimal tree problem in 3-space,which can not only avoid falling into local optima,but also has good effects in solving large scale problems. Promising results are obtained by using this hybrid method coded in MATLAB to solve series of Euclidean Steiner minimum tree problem instances in 3-space.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2015年第2期64-70,共7页 Operations Research and Management Science
基金 上海市一流学科建设资助项目(S1201YLXK) 上海市教育委员会科研创新项目(14YZ090) 高等学校博士学科点专项科研基金联合资助课题(20123120120005) 上海高校青年教师培养资助计划(slg12010) 上海理工大学博士科研启动项目(1D-10-303-002)
关键词 三维欧氏Steiner最小树 Delaunay四面体网格 凸多面体剖分 智能算法 euclidean steiner minimum tree problem in 3-space delaunay tetrahedron mesh generation convex polyhedron decomposition intelligent algorithm
  • 相关文献

参考文献4

  • 1MacGregor Smith J, Toppur B. Euclidean Steiner minimal trees, minimum energy configurations, and the embedding problemof weighted graphs in E3[ J]. Discrete Applied Mathematics, 1996, 71(1-3) : 187-215.
  • 2Smith W D, Smith J M. On the Steiner ratio in 3-space[ J]. Journal of Combinatorial Theory, 1995,Series A 69: 301-332.
  • 3Van Laarhoven,Jon W Ohlmann, Jeffrey W Ohlmann. A randomized delaunay triangulation heuristic for the euclidean steinertree problem in R-d[ J]. Journal of Heuristics, 2011,17(4) : 353-372.
  • 4陈学工,潘懋.空间散乱点集Delaunay四面体剖分切割算法[J].计算机辅助设计与图形学学报,2002,14(1):93-94. 被引量:7

二级参考文献2

  • 1Victor J D Tsai.Delaunay triangulations in TIN creation: An overview and a linear-time algorithm[].International Journal of Geographical Information Systems.1993
  • 2Tsung-Pao Fang,Les A Piegl.Delaunay triangulation in three dimensions[].IEEE Computer Graphics and Applications.1995

共引文献6

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部