期刊文献+

离散椭球分布下两阶段WCVaR风险利润优化模型及应用

Two Stages WCVaR Risk-profit Optimization Model under the Ellipsoidal Discrete Distribution and Application
下载PDF
导出
摘要 本文研究随机变量非完全分布下的两阶段风险-利润优化问题。采用最坏情况下条件风险(Worst-case Conditional Value-at-Risk:WCVaR)度量指标,在离散椭球分布下建立了两阶段WCVaR约束下利润期望最大优化模型,运用优化对偶方法将复杂的Max-Min结构化简,理论上证明了简化模型和原模型的同解性,以发电商电能分配组合优化为数值实例,验证了模型和计算方法的有效性。 This paper presents two-stage risk-profit optimization problem under the know part information of random variable. Taking worst-case Conditional Value-at-Risk( WCVaR) as a measuring index,we establish two-stage profit expectation maximization model under WCVaR constraint. By means of the dual method,the complex structure of the Max-Min becomes simple. The optimal solution between the original problem and the reduced optimization problem is proved to have the same solution. Taking optimal allocation of generation assets in power markets as numerical experiments,numerical results show the validity of the proposed model and computation method.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2015年第2期221-228,共8页 Operations Research and Management Science
基金 国家自然科学基金项目(11171095 71371065 61179033)
关键词 最坏情况下条件风险(WCVaR) 两阶段风险-利润优化 离散椭球分布 对偶方法 组合优化 Worst-case Conditional Value-at-Risk(WCVaR) two-stage risk-profit optimization ellipsoidal discrete distribution dual method portfolio optimization
  • 相关文献

参考文献14

  • 1Philippe J. Value at risk[ M ]. New York : The Me Graw-Hill Companies,Inc, 1997.
  • 2林辉,何建敏.VaR在投资组合应用中存在的缺陷与CVaR模型[J].财贸经济,2003,24(12):46-49. 被引量:46
  • 3Duffie D , Pan J. An overview of value at risk[ J]. Journal of Deriatives,1997 ,24(4) :7-49.
  • 4Artzner P. Application of coherent risk measures to capital requirements in insurance[ J]. North American Actuerial Journal,1999,38(3) : 11-25.
  • 5Rockafellar R T, Uryasw S. Conditional value-at-risk for general loss distributions [ J]. Journal of Banking and Finance,2002,(26) : 1443-1471.
  • 6Krokhmal P, Palmquist J, Uryasev S. Portfolio of optimization with conditional value-at-risk objective and constraints[ J]. TheJournal of risk, 2002, 4(2) : 11-27.
  • 7Zhou S S, Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management[ R]. Workingpaper, Department of Applied Mathematics and Physics,Kyoto University, 2006.
  • 8Prkopa A. Contributions to the theory of stochastic programming[ J]. Mathematical Programming, 1973 , (4) : 202-221.
  • 9Fabian C I. Handling CVaR objectives and constrains in two-stage stochastic models [ J]. European Journal of OperationalResearch, 2008,191 : 888-911.
  • 10张兴平,陈玲,武润莲.加权CVaR下的发电商多时段投标组合模型[J].中国电机工程学报,2008,28(16):79-83. 被引量:24

二级参考文献47

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部