期刊文献+

激振摆参数振动的实验研究

Experimental research of double frequency resonance phenomenon subjected to vertical excitation
下载PDF
导出
摘要 研究了一种激振摆参数振动的实验.当激振频率为激振摆固有频率2倍时激振摆会产生共振.实验探讨了激振摆从微阻尼振动到共振的幅时特性和幅频特性.对于小振幅纵向激振,当激振频率接近激振摆固有频率2倍时,激振摆的摆幅对激振频率很敏感,在减小频宽数使激振摆振动接近共振的过程中,激振摆的摆幅数随时间数会震荡变化(类似"拍"现象),"拍"的周期数和峰谷差数都随频宽数减小而增加;"拍"现象消失后继续减小频宽数,摆幅数随时间数将持续指数增大,运动失稳;在频宽数为零时,摆幅数随时间数增加最剧烈,即共振发生.通过激振摆理论模型对实验结果进行了动力学分析,非线性动力学方程的数值解结果与实验结果吻合较好.该实验研究对于解决与共振相关的问题有潜在的应用价值. An experimental study of an excited parametric vibration is reported,the resonance condition is that external frequency is twice as large as inherent frequency, and the direction of driving force is vertical to movement direction. The amplitude-frequency characteristic of the resonance and the critical state are discussed. When both intensity of vertical excitation and frequency width number are small, the law of vibration is sensitive to frequency width number . While frequency width number is reduced, amplitude number will oscillate with time. That is "beat" phenomenon. Both period number and peak-valley difference number increase with the decrease of frequency width number. After "beat" disappears, the amplitude number continues increasing exponentially with time number. When frequency width number equals to zero, the amplitude number increases sharply with the period number, the vibra- tion is unstable and then resonance occurs. Based on the pendulum model ,the numerical solutions of dynamic equa- tion are in well agreement with the experimental results. The experimental study for solving problems such as pre- vention of natural disasters associated with resonance has potential applications.
出处 《大学物理》 北大核心 2015年第5期39-43,共5页 College Physics
基金 贵州省科技厅基金资助项目(黔科合J字[2011]2099号) 贵州省省长专项基金资助项目(黔省专合字(2010)5号) 国家自然科学基金(11264006)资助
关键词 振动 二倍频 数值解 vibration double frequency numerical solution
  • 相关文献

参考文献7

二级参考文献83

  • 1何学军,张琪昌,赵德敏.索结构风雨振的周期运动及混沌运动动力学[J].吉林大学学报(工学版),2009,39(3):679-685. 被引量:2
  • 2王建军 李其汉 等.齿轮系统动力学多重非线性问题研究[A]..中国航空学会机械动力传输专业委员会2001年学术会议论文集[C].,2001..
  • 3[1]Ulsoy A G Mote Jr C D and Syzmani R (1978), Principal developments in band saw vibration and stability research[J], Holz als Roh-und Werkstoff, 36, 273~280
  • 4[2]Wickert J A and Mote Jr C D (1988), Current research on the vibration and stability of axially moving materials[J], Shock and Vibration Digest, 20, 3~13
  • 5[3]Mockensturm E M Perkins N C and Ulsoy A G (1996), Stability and limit cycles of parametrically excited, axially moving strings[J], ASME J Vib Acoust, 118, 346~351
  • 6[4]Chung J and Han C S (2001), Vibration of an axially moving string with geometric non-linearity and translating acceleration[J], J Sound Vib, 240, 733~746
  • 7[5]Huang J S Fung R F and Lin C H (1995), Dynamic stability of a moving string undergoing three-dimension vibration[J], Int J Mech Sci, 37, 145~160
  • 8[6]Ozkaya E and Pakdenirli M (2000b), Lie group theory and analytical solutions for the axially accelerating string problem[J], J Sound Vib, 230, 729~742
  • 9[7]Chakraborty G and Mallik A K (1999), Stability of an accelerating beam[J], J Sound Vib, 27, 309~320
  • 10[8]Pakdemirli M and Batan H (1993), Dynamic stability of a constantly accelerating string[J], J Sound Vib, 168, 371~378

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部