期刊文献+

变直径旋翼直升机飞行性能研究 被引量:2

Helicopter Flight Performance Improvement by Variable Rotor Diameter
下载PDF
导出
摘要 为了研究旋翼直径变化对直升机性能的提升作用,将旋翼动力学综合模型与机身模型相耦合,采用前飞配平方法计算稳态时旋翼操纵量和机身姿态角,从而计算直升机需用功率。通过研究直升机功率与旋翼半径、前飞速度、直升机起飞重量以及飞行高度之间的关系来确定直升机需用功率的降低幅度,同时也分析了旋翼桨距和机体倾斜角随旋翼半径和前飞速度的变化趋势。在中高速飞行时,特别是高速飞行时,旋翼半径的变化可以显著地提升直升机的性能。当飞行速度为200km/h、旋翼半径减小20%,需用功率可降低37.6%。随着飞行高度的不断增加,在低速到中速飞行时直升机功率减小幅度会减小,在高速时功率减小幅度会增大。旋翼总距和纵横向周期变距随旋翼半径减少而增加,机体纵横向倾斜角随半径减小而减小。 To investigate the performance improvement of helicopters by varying rotor diameter, a com- prehensive rotor model is combined with a fuselage model. A propulsive trim method is introduced to obtain the pitch controls and fuselage attitude in steady states and then the helicopter power required. The helicopter power with rotor radius, forward speed, helicopter weight and fight altitude is investiga- ted to explore how much power reduction can be achieved. The pitch controls and the tilt of fuselage with rotor radius and forward speed are also addressed. Varying rotor radius can achieve significant heli- copter performance improvement in medium to high forward flight, especially at high speed. 20% reduction of rotor radius can reduce the power by 37.6 % at the speed 200 km/h. The power reduction decreases in low to medium forward flight and increases at high speed with increasing flight altitude. The collective and cyclic pitches increases with decreasing rotor radius, and the longitudinal and lateral tilt of the fuselage decreases.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第2期252-258,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(11472129)资助项目 航空基金(2013ZA52014)资助项目 中央高校基本科研业务费(NS2014007)资助项目
关键词 直升机 旋翼 变半径 性能 配平 helicopter rotor variable radius performance trim
  • 相关文献

参考文献1

共引文献7

同被引文献28

  • 1KANG H. Dynamic blade shape for improved helicopter rotor performance[J]. Journal of the American Helicopter Society, 2010, 55(3)= 32008-1 11.
  • 2LIEBECK R H. Design of subsonic airfoils for high lift [J]. Journal of Aircraft, 1978, 15(9): 547-561.
  • 3NEUHART D H, PENDERGRAFT O C. A water tunnel study of Gurney flaps: NASA-TM-4071 [R]. Washing- ton, D. C. : NASA Langley Research Center, 1988.
  • 4JEFFREY D, ZHANG X. Aerodynamics of Gurney flaps on a single-dement high-lift wing[J]. Journal of Aircraft, 2000, 37(2): 295-301.
  • 5JEFFREY D R M, HURST D W. Aerodynamics of the Gurney flap[C]//Proceedings of the 14th AIAA Applied Aerodynamics Conference. Reston= AIAA,1996: 349-358.
  • 6CAMOCARDI M E, LEO J M D, DELNERO J S, et al. Experimental study of a NACA4412 airfoil with movable Gurney flap[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston= AIAA, 2011: 1-15.
  • 7LI Y C, WANG J J, ZHANG P F. Influences of mount ing angles and locations on the effects of Gurney flaps[J]. Journal of Aircraft, 2003, 40(3): 494-498.
  • 8YEE K, JOO W, LEE D H. Aerodynamic performance analysis of a Gurney flap for rotorcraft application [J]. Journal of Aircraft, 2007, 44(3) = 1003 1014.
  • 9MYOSE R, HERON I, PAPADAKIS M. The post-stall effect of Gurney flaps on a NACA 0011 airfoil[J]. Ameri- can Technical Publishers LTD, 1996, 105(1)= 173 178.
  • 10MIN B Y, SANKAR L N, RAJMOHAN Net al. Compu tational investigation of the effects of Gurney flap on for- ward flight characteristics of helicopter rotors[J]. Journal of Aircraft, 2009, 46(6): 1957-1964.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部