摘要
针对传统混合动力汽车控制方法无法实现实时最优控制的问题,提出了基于简化混合动力汽车系统模型的预测控制智能优化策略。通过将3自由度的系统模型简化为1自由度的系统模型,并采用连续广义最小残量方法求解模型预测控制问题。运用MATLAB/Simulink与GT-POWER联合仿真平台进行仿真,实验结果验证了系统模型简化的有效性,以及所设计的模型预测控制算法大幅度提高混合动力汽车的燃油经济性的能力和实时控制性能。
This paper proposed model predictive control intelligent optimization strategies based on system model simplification for hybrid electric vehicles to deal with computation burden and on-line optimization problems in conventional control strategies. The 3 degrees of freedom system model was reduced to 1 degree of freedom system model. The model predictive control problem was solved using continuation/generalized minimum residual method. The simulation was conducted using MATLAB/ Simulink and GT-POWER co-simulation platform. The results showed that the proposed model simplification is effective, and the proposed model predictive control method can improve fuel economy significantly and can be implemented in real-time.
出处
《系统仿真技术》
2014年第4期273-278,291,共7页
System Simulation Technology
基金
国家自然科学基金资助项目(51405137
61403129)
河南理工大学博士基金资助项目
河南省高等学校控制工程重点学科开放实验室基金资助项目
关键词
模型预测控制
混合动力汽车
智能优化
model predictive control
hybrid electric vehicles
intelligent optimization