期刊文献+

转GmHAP3-17基因大豆的抗旱性分析 被引量:3

Aanalysis of Drought Tolerance in Transgenic Soybean with Gm HAP3-17
下载PDF
导出
摘要 Gm HAP3-17基因是一个与At HAP3-1同源的转录因子,本研究利用超表达Gm HAP3-17大豆,在模拟干旱条件下以及田间干旱试验下进行了转基因大豆的抗旱性分析。结果显示:在大棚盆栽模拟干旱胁迫条件下,转基因大豆H16、H18、H26比野生型大豆WT根系发达,主根长且侧根较多,植株生长状态比对照好,叶片枯萎发生较迟、程度较轻。转基因大豆与野生型相比,MDA含量低,叶片伤害度较轻,叶片含水量较高。进一步研究表明,在田间自然干旱胁迫下,转基因大豆同样表现出较好的生长状况,较低的叶片伤害度和较高的叶片含水量。在自然干旱条件下,与野生型大豆相比,转Gm HAP3-17基因大豆表现为根系发达、扎根深、侧根多,增加了株高、主茎节数、有效分枝数。H26株系的有效荚数、单株粒数、单株粒重、百粒重均比野生型提高明显,表现出了显著的产量优势。上述结果表明:GmHAP3-17基因具有正调控干旱的功能,因而该基因将成为培育抗旱转基因作物的一个有效的基因资源。 The present research work was mainly aim at analysing the morphological and physiological response under drought stress in transgenic soybean with GmHAP3-17. The results showed that under water-limited conditions of greenhouse, compa- ring with wild-type, the H16, H18 and I-I26 lines of transgenic soybean appeared better growth status, wilting later and mil- der, longer taproot, more lateral roots, lower degree of leaf damage, lower concentration of MDA and higher content of leaf relative water. Future experiment proved that under natural drought conditions of dry regions, comparing with wild-type, the root system of transgenic soybeans developed well, grew rapidly, and showed longer taproot, more lateral roots. The plants of transgenic soybean were higher in plant height, more in the number of branch and main stern node, more in pods and kernels, larger in seed size and hundred-grain weight. These consequences indicated that the GmHAP3-17 gene functions were positive regulation after drought stress treatment and thus, it could be useful in molecular breeding as effective genetic sources of trans- genic crops.
出处 《大豆科学》 CAS CSCD 北大核心 2015年第2期249-254,共6页 Soybean Science
基金 中国博士后科学基金(2014M551205) 国家自然科学基金(31201228)
关键词 GM HAP3-17 大豆 抗旱性 基因功能分析 GmHAP3-17 Soybean Drought tolerance Gene function analysis
  • 相关文献

参考文献13

  • 1Bruce W B, Edmeades G O, Barker T C.Molecular and physiological approaches to maize improvement for drought tolerance[J].Journal of Experimental Botany, 2002, 53:13-25.
  • 2刘强,赵南明,K.Yamaguch-Shinozaki,K.Shinozaki.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16. 被引量:176
  • 3YamaguchiShinozaki K, Kasuga M, Liu Q. Biological mechanisms of drought stress response[J].JIRCAS Working Report, 2002, 9: 1-8.
  • 4Donald E N, Peter P R, Tom R A. Plant nuclear factor Y (NF.Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J].Proceeding of the National Academy of Science of the United States of America, 2007, 104(42):16450-16455.
  • 5Mantovani R.The molecular biology of the CCAAT.binding factor NF.Y[J].Gene, 1999, 239:15-27.
  • 6Siefers N, Dang K K, Kumimoto R W.Tissue-specific expression patterns of Arabidopsis NF Y transcription factors suggest potential for extensive combinatorial complexity[J]. Plant Physiology- 2009, 149(2):625-641.
  • 7Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology, 2013, 82(1-2):113-29.
  • 8Pennisi E. Plant genetics Getting to the root of drought responses[J].Science, 2008, 11:171-173.
  • 9Huang C Y, Kuchel H, Edwards J. A DNA.based method for studying root responses to drought in field-grown wheat genotypes[J].Scientific Reports, 2013, 3:3194.
  • 10LeRudulier D, Strom A R, Dandekar A M.Molecular biology of osmoregulation[J]. Science, 1989, 224:1064-1068.

二级参考文献12

  • 1Kasuga M,Nature Biotechnol,1999年,17卷,287页
  • 2Hao D Y,J Bio Chem,1998年,273卷,2657页
  • 3Liu Q,Plant Cell,1998年,10卷,1391页
  • 4Xu P,Plant Physiol,1998年,118卷,867页
  • 5Zhou J M,EMBO J,1997年,16卷,3207页
  • 6Wilson K,Plant Cell,1996年,8卷,659页
  • 7Jiang C,Plant Mol Biol,1996年,30卷,679页
  • 8Wang H,Plant Mol Biol,1995年,28卷,605页
  • 9Sasaki T,Plant J,1994年,6卷,615页
  • 10Wang M M,Nature,1993年,364卷,121页

共引文献175

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部