期刊文献+

基于粒子群优化算法的光刻机光源优化方法 被引量:5

Source Optimization Using Particle Swarm Optimization Algorithm in Optical Lithography
原文传递
导出
摘要 提出了一种基于粒子群优化算法的光刻机光源优化方法。将光源信息编码为粒子,利用图形误差作为评价函数,通过更新粒子的速度与位置信息不断迭代优化光源图形。对周期接触孔阵列和含有交叉门的复杂掩模图形的仿真验证表明,两者的图形误差分别降低了66.1%和27.3%,有效提高了光刻成像质量。与基于遗传算法的光源优化方法相比,该方法具有更快的收敛速度。另外,还研究了像差和离焦对本方法稳健性的影响。 An efficient source optimization method using particle swarm optimization algorithm is proposed. The fidelity is adopted as the fitness function. Sources are encoded into particles, and then optimization is implemented by updating the velocities and positions of these particles. This method is demonstrated by using two typical mask patterns, including a periodic array of contact holes and a complex pattern with cross gate design. The pattern errors are reduced by 66.1% and 27.3%, respectively. The results show that the proposed method leads to faster convergence than the source optimization method using genetic algorithm while improving the image quality at the same time.The robustness of the proposed method is also verified by adding aberrations and defocus respectively.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第4期287-297,共11页 Acta Optica Sinica
基金 国家自然科学基金(61275207 61205102 61405210)
关键词 光学制造 光刻 分辨率增强技术 光源掩模优化 光源优化 粒子群优化 optical fabrication optical lithography resolution enhancement technique source mask optimization source optimization particle swarm optimization
  • 相关文献

参考文献39

  • 1A Erdmann, R Farkas, T Fuhner, et al" Mask and source optimization for lithographic imaging systems [C]. SPIE, 2003, 5182: 88-102.
  • 2A K K Wong. Resolution Enhancement Techniques in Optical Lithography [M]. Bellingham: SPIE, 2001.
  • 3X Ma, J Gao, C Han, et al.. Efficient source polarization optimization for robust optical lithography [C]. SPIE, 2014, 9052: 90520T.
  • 4Z Y Song, X Ma, J Gao, et al" Inverse lithography source optimization via compressive sensing [J]. Opt Express, 2014,22(12):14180-14198.
  • 5R R Yallishayee, S A Orszag,E Barouch. Optimization of stepper parameters and their influence on OPC [C]. SPIE, 1996, 2726:660-669.
  • 6M Burkhardt, A Yen, C Progler, et al.. Illuminator design for the printing of regular contact patterns [J]. MicroelectronicEngineering, 1998, 41-42: 91-95.
  • 7T S Gau, R G Liu, C K Chen, et al" Customized illumination aperture filter for low k 1 photolithography process [C]. SPIE, 2000,4000: 271-282.
  • 8M Mulder, A Engelen,0 Noordman, et al.. Performance of flexray: a fully programmable illumination system for generation offreeform sources on high NA immersion systems [C]. SPIE, 2010, 7640: 76401P.
  • 9Y Granik. Source optimization for image fidelity and throughput [J]. Journal of Mico/Nano lithography Microfabrication andMicrosystems, 2004, 3(4): 509-522.
  • 10T Kehan, A Krasnoperova, D Melville, et al.. Benefits and trade-offs of global source optimization in optical lithography [C]. SPIE,2009,7274: 72740C.

二级参考文献46

  • 1杨慧珍,李新阳,姜文汉.自适应光学系统随机并行梯度下降控制算法仿真与分析[J].光学学报,2007,27(8):1355-1360. 被引量:50
  • 2A Erdmann, R Farkas, T Fühner, et al..Mask and source optimization for lithographic imaging systems [C].SPIE, 2003, 5182: 88-102.
  • 3F M Schellenberg.Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography [C].SPIE, 2004, 5377: 1-20.
  • 4S Nagahara, K Yoshimochi, H Yamazaki, et al..SMO for 28-nm logic device and beyond: impact of source and mask complexity on lithography performance [C].SPIE, 2010, 7640: 76401H.
  • 5M Rothschild.A roadmap for optical lithography [J].Opt Photon News, 2010, 21(6): 26-31.
  • 6K Yoshimochi, S Nagahara, K Takeda, et al..Challenges for low-k1 lithography in logic devices by source mask co-optimization [C].SPIE, 2010, 7640: 76401K.
  • 7T Matsuda, S Irie, T Shimizu, et al..Mask enhancer technology with source mask optimization (SMO) for 2Xnm-node logic layout gate fabrication [C].SPIE, 2011, 7973: 797316.
  • 8J C Yu, P C Yu.Gradient-based fast source mask optimization (SMO) [C].SPIE, 2011, 7973: 797320.
  • 9A E Rosenbluth, S Bukofsky, C Fonseca, et al..Optimum mask and source patterns to print a given shape [J].J Micro/Nanolith MEMS MOEMS, 2002, 1(1): 13-30.
  • 10X Ma, G R Arce.Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography [J].Opt Express, 2009, 17(7): 5783-5793.

共引文献16

同被引文献22

  • 1胡台光,吴爱清,刘秋华.光可变衰减器[J].光通信研究,1993(1):22-26. 被引量:3
  • 2Alexandre Gatto,Norbert Kaiser.Research and development of VUV optical coatings for micro mirror applications[J].光学精密工程,2005,13(4):465-470. 被引量:4
  • 3袁琼雁,王向朝,施伟杰,李小平.浸没式光刻技术的研究进展[J].激光与光电子学进展,2006,43(8):13-20. 被引量:16
  • 4M Mulder,A Engelen,O Noordman,et al..Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems[C].SPIE,2009,7520:75200Y.
  • 5S Inoue,T Fujisawa,S Tamaushi,et al..Optimization of partially coherent optical system for optical lithography[J].J Vac Sci Technol,1992,10(6):3004-3007.
  • 6R R Vallishayee,S A Orszag,E Barouch.Optimization of stepper parameters and their influence on OPC[C].SPIE,1996,2726:660-669.
  • 7T E Brist,G E Bailey.Effective multicutline QUASAR illumination optimization for SRAM and logic[C].SPIE,2003,5042:153-159.
  • 8Y Granik.Source optimization for image fidelity and throughput[C].SPIE,2004,3(4):509-522.
  • 9M Burkhardt,A Yen,C Progler,et al..Illuminator design for printing of regular contact patterns[J].Microelectron Eng,1998,41-42:91-95.
  • 10C C Hsia,T S Gau,C H Yang,et al..Customized off-axis illumination aperture filtering for sub-0.18 KrF lithography[C].SPIE,1999,3679:427-434.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部