期刊文献+

二维全谱高分辨中阶梯光谱仪光学系统设计 被引量:9

Optical Design of High Resolution Two Dimension Echelle Spectrometer
原文传递
导出
摘要 传统的罗兰圆光谱仪和Czerny-Turner型光谱仪常常采用刻线密的光栅和大的成像焦距,来提高其光谱分辨率,其结果导致成本高和仪器体积庞大。为了克服这一缺点,提出了一种中阶梯光栅和低色散棱镜相结合的光谱仪光学系统设计方法。具体分析了中阶梯光栅的基本原理和使用方法,给出设计基于中阶梯光栅的光谱仪基本步骤,并且实际设计了基于中阶梯光栅的高分辨光谱仪光学系统,焦距为400 mm,可在全谱工作波段180~800 nm成二维光谱。Zemax光学设计软件对光学系统进行光线追迹结果表明,该系统环围能量在单个CCD像素(24 mm×24 mm)内达到50%~70%以上,200 nm处分辨率可达0.00675 nm,完全满足设计指标要求。 The dense grooves grating and long camera focus are usually used to obtain high optical resolution in traditional Rowland and Czerny-Turner spectrometers. To avoid expensive cost or large volume of spectrometers,a novel optical system based on echelle and low dispersion prism with high optical resolution is presented. Firstly,the principle and application method of echelle are deduced in details. Secondly, the design steps are provided to set up a optical system with echelle. Finally, an optical system example based on echelle grating is designed. Its camera focus is 400 mm with wavelength range of 180~800 nm, the spectrograph can be imaged on the two dimension area at the same time. The ray tracing and optimization to the optical system are carried out with Zemax software, and the results show the encircle energy in a single CCD pixel(24 mm×24 mm) area can reach 50%~70%above within wavelength range of 180~800 nm, the resolution is 0.00675 nm at 200 nm, and it is enough to meet applications of distinguishing most elements.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第4期311-320,共10页 Acta Optica Sinica
基金 国家863计划(2013AA122201) 北京电子科技职业学院科研基地建设-科技创新平台项目(PXM2013-014306-000035)
关键词 光学设计 光谱仪 中阶梯光栅 高分辨 二维光谱 optical design spectrometer echelle high resolution two dimensional spectra
  • 相关文献

参考文献17

二级参考文献127

共引文献111

同被引文献44

  • 1Furxhi O, Marks D L, Brady D J. Echelle crossed grating millimeter wave beam scanner[J] . Optics Express, 2014, 22 (13) : 16393-16407.
  • 2Korablev O, Montmessin F, Trokhimovsky A. Compact echelle spectrometer for occultation sounding of the Martian atmosphere: Design and performance[J] . Applied Optics, 2013, 52(5): 1054-1065.
  • 3Bykov S V, Sharma B, Asher S A. High-throughput, high-resolution echelle deep-UV Raman spectrometer[J]. Applied Spectroscopy, 2013, 67(8): 873-883.
  • 4Wood M P, Lawler J E. Aberration-corrected echelle spectrometer for measuring ultraviolet branching fractions of iron- group ions[J]. Applied Optics, 2012, 51(35): 8407-8412.
  • 5Sakanoi T, Kasabaa Y, Kagitania M, et al. Development of infrared echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary abservation[C]. SPIE, 2014, 9147: 91478D.
  • 6Reynolds R O, Dettmann Lee. Adapting a very high resolution echelle spectrograph to an 8 meter class telescope [J]. SHE, 2014, 9147: 91477X.
  • 7Liu K, Hieftie G M. Investigation of wavelength calibration for an echelle cross-dispersion spectrometer[J]. J Anal At Spectrom, 2003, 18(10): 1177-1184.
  • 8Sadler D A, Littlejohn D, Perkins C V. Automatic wavelength calibration procedure for use with an optical spectrometer and array detector[J]. Journal of Analytical Atomic Spectrometry, 1995, 10(3) : 253-257.
  • 9Lavigne J F, Doucet M, Wang M, et al. Study of the image quality and stray light in the critical design phase o{ the Compact Echelle Spectrograph for Aeronomical Research (CESAR) [C]. SPIE, 2010, 7735 : 773539.
  • 10Korablev O, Montmessin F, Trokhimovsky A, et al. Compact echelle spectrometer for occultation sounding of the Martian atmosphere: Design and performance[J]. Applied Optics, 2013, 52(5): 1054-1065.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部