期刊文献+

ITD与DLE相结合的模拟电路故障诊断 被引量:1

Fault Diagnosis of the Analog Circuit System Based on ITD and DLE
下载PDF
导出
摘要 指向李雅普诺夫指数(directional Lyapunov exponent,DLE)描述了一个系统在相空间中平衡点附近的特征结构,它与系统参数之间有着直接联系,因而可用来实现对被测系统的故障诊断。但由于对其计算时要求输出相空间轨线在平衡点附近形成单涡结构,因而对激励信号形式提出了很高的要求。利用固有时间尺度分解(intrinsic time-scale decomposition,ITD)方法,将任意混沌激励下的输出信号分解为一组单涡混沌信号,进而对各分量求解DLE曲线;并通过分析DLE曲线所反映的被测系统平衡点附近各个方向上平均发散速率大小的变化,实现对被测模拟电路系统的故障诊断。仿真结果表明,该方法可以有效地对被测系统平衡点附近结构进行分析,可应用于模拟电路的故障诊断之中。 Directional Lyapunov exponent (DLE) depicts the eigen-structure around a system's equilibrium points in the phase space, which closely associates with the parameters of the system, and it can be used to detect the fault of the system under test (SUT). But, the calculation of the DLE curves needs the output phase space trajectory to be a single roll, which limit the style of the excitation. The output of the SUT under chaotic excitations is decomposed into a group of signals that are single roll in its corresponding Hilbert space by using the intrinsic timescale decomposition (ITD). Then DLE curves are calculated for each single roll trajectory, and the parameter changes are detected by analyzing the DLE curves. Simulation results show that, the proposed methods can analyze the eigen-structure around the equilibrium point in the phase space, and it can be used for the fault diagnosis of the analog circuit system.
出处 《科学技术与工程》 北大核心 2015年第12期70-74,80,共6页 Science Technology and Engineering
基金 国家自然科学基金(61174207,11405267)资助
关键词 模拟电路 故障诊断 ITD分解 指向李雅普诺夫指数 analog circuit fault diagnosis ITD decomposition directional Lyapunov exponent
  • 相关文献

参考文献9

  • 1杨英华,魏玉龙,李召,秦树凯.基于子空间混合相似度的过程监测与故障诊断[J].仪器仪表学报,2013,34(4):935-941. 被引量:10
  • 2Han H T, Ma H G, Xu D H, et al. Non-parametric identification method of GFRFs for MIMO nonlinear system excited by muhitone sig- nal. Journal of Sound and Vibration, 2013; 332(10) : 2562-2574.
  • 3杨东东,马红光,徐东辉,冯晓伟.单输入单输出系统故障检测中匹配混沌激励的设计[J].物理学报,2014,63(12):75-83. 被引量:1
  • 4杨东东,马红光,徐东辉,刘浩淼.指向Lyapunov指数及其在单输入单输出系统故障检测中的应用[J].物理学报,2014,63(22):104-112. 被引量:1
  • 5Frel M G, Osorio I. Intrinsic time-scale decomposition : time-frequen- cy-energy analysis and real-tlme filtering of non-stationary signals. Proceedings of the Royal Scciety of Lotldon A, 2006 ; 463 (2078) : 321 -342.
  • 6Uffinger M, Sadlo F, Kirby M, et al. FTLE computation beyond first- order approximation. Eurographics, 2012 : 61--64.
  • 7Kennel M B, Brwon R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical con- struction. Physical Review A, 1992 ; 45 (6) : 3403-3411.
  • 8Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 2003; 91 ( 3 ) : 034101-4)34113.
  • 9Overbay L A, Olson C C, Todd M D. A parametric investigation of state-space-based prediction error methods with stochastic excitation for structural health monitoring. Smart Materials and Structures, 2007; 16(5): 1621-1633.

二级参考文献36

  • 1STEFATOS G, HAMZA A B. Dynamic independent component analysis approach for fault detection and diagnosis[J]. Expert Systems with Applications,2010,37:8606-8617.
  • 2ACHARYA U R, SREE S V, ALVIN A P C, et al. Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework [ J ]. Expert Systems with Applications,2012,39(10) :9072-9078.
  • 3ZHANG J, MARTIN E B, MORRIS A J. Fault detection and diagnosis using multivariate statistical techniques[J]. Chemical Engineering Research and Design ,1996,74( 1 ):89-96.
  • 4JOHANNESMEYER M C, SINGHAI A, SEBORG D E. Pattern matching in historical data [ J ]. AIChE Journal, 2002,48 (9) : 2022-2038.
  • 5SINGHAI A ,SEBORG D E. Pattern matching in multivariate time series databases using a window-moving approach [ J ]. Industrial and Engineering Chemistry Research, 21302,41 : 3822-3838.
  • 6KANO M, HASEBE S, HASHIMOTO I, et al. A new multivariate statistical process monitoring method using principal component analysis [ J ]. Computers and Chemical Engineering,2001,25 : 1103-1113.
  • 7ZHIQIANG G, ZHIHUA S. Process monitoring based on independent component analysis-principal component analysis(ICA-PCA) and similarity factors [ J ]. Computers and Chemical Engineering,2007,46:2054-2063.
  • 8LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis [ J ]. Journal of Process Control,2004,14:467-485.
  • 9HYVARINEN A. New approximation of differential entropy for independent component analysis and projection pursuit [J]. Advances in Neural Information Processing Systems, 1998,10:273-279.
  • 10Isermann R, Balle P 1997 Control Eng. Pract. 5 709.

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部