期刊文献+

移动荷载对周期加固壳波传播的影响

Effects of moving loads on wave propagation in periodic stiffened shell
下载PDF
导出
摘要 基于Donnell-Mushtari薄壳理论,建立了均质壳体的轴对称径向波动微分方程,推导了周期加固壳在随荷载移动的动态坐标系下各胞元的动态刚度矩阵,进而利用传递矩阵法得到了相邻胞元间的传递矩阵,并计算了均质壳在移动荷载作用下的临界速度。根据Wolf算法,采用局部化因子分析了几何尺寸变化及其失谐对波传播及其局部化特性的影响。分析表明,与均质壳相比,周期加固壳扩展了临界速度值。结构的尺寸变化显著地影响速度通禁带的个数、宽度及其位置,可以通过调整结构的参数来改变波动的传播。失谐周期加固壳会出现波动局部化现象,随着失谐程度的增加,结构的波动局部化程度增强。分析结果对周期加固壳在移动荷载作用下的优化设计和振动控制研究提供了理论参考。 According to Donnell-Mushtari theory for thin shells,the differential equation governing the radial axi-symmetric vi-bration of the uniform shell is established.The dynamic stiffness matrix of each cell in the periodic stiffened shell is obtained in a coordinate system moving with the load and the transfer matrix between the adjacent cells is derived based on the transfer ma-trix method.A critical velocity of a uniform shell is investigated.The effects of geometric sizes and disorder on the wave prop-agation and localization characteristics of the ordered and disordered periodic stiffened shells are assessed from localization fac-tors according to the Wolf’s algorithm.The obtained results show that periodic stiffened shells expand the critical velocities. Geometric sizes have drastic effects on the numbers and widths as well as the locations of the velocity bands,so the characteris-tics of wave propagation in the structure can be altered by properly tuning structural parameters.The wave localization phe-nomenon occurs for the disordered periodic stiffened shell.As the level of disorder increases,the localization degree is strengthened.The investigation provides the basic guidelines for optimization design and vibration control in periodic stiffened structures.
出处 《振动工程学报》 EI CSCD 北大核心 2015年第2期190-196,共7页 Journal of Vibration Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB013800) 国家自然科学基金资助项目(51208390) 教育部博士点基金资助项目(20110141120026)
关键词 周期加固壳 波传播 波动局部化 移动荷载 局部化因子 periodic stiffened shell wave propagation wave localization moving loads localization factor
  • 相关文献

参考文献11

  • 1Aldraihem O J, Baz A. Dynamic stability of periodic stepped beams under moving loads [J]. Journal of Sound and Vibration, 2002,50(5) :835--848.
  • 2Ruzzene M, Baz A. Dynamic stability of periodic shells with moving loads [J]. Journal of Sound and Vibra- tion, 2006,296(4/5) :830--844.
  • 3Baz A. Active control of periodic structures [J]. Jour- nal of Vibration and Acoustics ASME, 2001,123 (4) : 472--479.
  • 4Yu D L, Wen J H,Shen H J, et al. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads [J]. Physics Letters A,2012,376(45):3 417--3 422.
  • 5Bouzit D, Pierre C. Vibration confinement phenomena in disordered, mono-coupled, multi-span beams [J]. Journal of Vibration and Acoustics ASME, 1992,114 (4) :521--530.
  • 6Bouzit D, Pierre C. Wave localization and conversion phenomena in multi-coupled multi-span beams [J]. Chaos, Solitons N. Fractal, 2000, 11 (10): 1 575-- 1 596.
  • 7Li F M,Wang Y S. Wave localization in randomly dis- ordered multi-coupled multi-span beams on elastic foundations [J]. Wave Random Complex, 2006, 16 (3) :261--279.
  • 8王晶,于桂兰.带阻尼失谐周期多跨连续梁的振动局部化问题[J].北京交通大学学报,2009,33(4):144-148. 被引量:4
  • 9陈阿丽,李凤明,汪越胜.失谐压电周期结构中波动的局部化[J].振动工程学报,2005,18(3):272-275. 被引量:9
  • 10Li F M, Wang Y S. Study on wave localization in dis- ordered periodic layered piezoelectric composite struc tures [J]. International Journal of Solids and Struc- tures,2005,42(24-25) :6 457--6 474.

二级参考文献21

  • 1李凤明,汪越胜.压电周期结构振动主动控制研究[J].振动工程学报,2004,17(z2):828-830. 被引量:18
  • 2Mead D J. Wave Propagation and Natural Modes in Periodic Systems, I: Mono-Coupled Systems [ J ]. Journal of Sound and Vibration, 1975, 40:1 - 18.
  • 3Mead D J. Wave Propagation and Natural Modes in Periodic Systems, II: Multi-Coupled Systems, with and Without Damping[J]. Journal of Sound and Vibration, 1975, 40: 19- 39.
  • 4Mead D J. A New Method of Analyzing Wave Propagation in Periodic Structures: Applications to Periodic Timo- shenko Beams and Stiffened Plates [ J]. Journal of Sound and Vibration, 1986, 104: 9-27.
  • 5Mead D J. Wave Propagation in Continuous Periodic Structures: Research Contributions from Southampton 1964- 1995[J]. Journal of Sound and Vibration, 1996, 190: 495 - 524.
  • 6Pierre C, Tang D M, Dowell E H. Localized Vibrations of Disordered Muhi-Span Beams: Theory and Experiment[ J]. AIAA Journal, 1987, 25(9): 1249- 1257.
  • 7Pierre C, Dowell E H. Localization of Vibrations by Struc- tural Irregularity [ J ]. Journal of Sound and Vibration, 1987, 114: 549-564.
  • 8Bouzit D, Pierre C. Vibration Confinement Phenomena in Disordered, mono-Coupled, Multi-Span Beams[J]. Journal of Vibration and Acoustics, 1992, llg: 521 -530.
  • 9Bouzit D, Pierre C. Localization of Vibration in Disordered Multi-Span Beams with Damping[J]. Journal of Sound and Vibration, 1995, 184: 625-648.
  • 10Bouzit D, Pierre C. Wave Localization and Conversion Phenomena in Multi-Coupled Multi-Span Beams [ J ]. Chaos, Solitons and Fravtals, 2000, 11:1575 - 1596.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部