摘要
VaR风险度量在金融、保险中有重要的应用.本文建立了贝叶斯模型,在某种损失函数下研究了VaR风险度量的贝叶斯估计.证明了指数-伽马分布下贝叶斯估计的强相合性和渐近正态性,最后利用数值模拟的方法验证了不同样本容量下估计的收敛速度.
VaR measure has important applications in finance and insurance practice. In this paper, the Bayesian models are established. Under some loss function, the Bayeian estimate of VaR is derived. In addition, we prove the strongly consistency and asymptotic normality for the Bayesian estimation of VaR under exponential-Gamma model. Finally, the numerical simulation is done to verify the convergence rate of the estimate of VaR with diffierent sample sizes.
出处
《应用概率统计》
CSCD
北大核心
2015年第1期46-56,共11页
Chinese Journal of Applied Probability and Statistics
基金
国家自然科学基金(71361015)
江西省自然科学基金(20142BAB201013)
江西省教育厅基金(GJJ13217)
中国博士后面上资助(2013M540534)
特别资助(2014T70615)
江西省博士后择优项目(05ZR14046)资助
关键词
在险价值度量
贝叶斯估计
损失函数
强相合性
渐近正态性.
Value at risk measure, Bayesian estimation, loss function, strong consistency, asymp-totic normality.