期刊文献+

基于FxLMS算法和预测滤波器的数字耳机降噪研究 被引量:1

Digital Headphone Noise Cancellation Research Based on FxLMS Algorithm and Prediction Filter
下载PDF
导出
摘要 通常数字降噪耳机的自适应滤波器采用最小均方差(LMS)、归一化最小均方差(NLMS)等算法,但是由于降噪耳机电路中存在次级通道延迟和AD/DA转换延迟,导致这些滤波器输出信号无法与噪声信号协调起来。FxLMS算法能够有效补偿次级通道延迟,同时在FxLMS滤波器基础上,增加预测滤波器用于补偿AD/DA转换延迟。仿真中,用增加预测滤波器的FxLMS滤波器对已采样的发动机噪声进行降噪,并将其降噪效果与LMS自适应滤波器的降噪效果进行比较。结果表明,在处理低频噪声时,改进后的FxLMS滤波器降噪效果优于LMS自适应滤波器。 The adaptive filter based on LMS and NLMS algorithms is usually used to remove the noise in digital headphones. Because of the latency of secondary-path and AD/DA conversion, these filter output signal can't collaborate with the noise. FxLMS algorithm can compensate for secondary-path delay effec- tively. We combined the prediction filter with FxLMS filter to compensate for AD/DA conversion delays. In the simulation,the FxLMS filter with prediction filter was used to reduce the sampled noise of engine and the noise cancellation effect was compared with LMS adaptive filter. The results indicate that the improved FxLMS filter is superior to the LMS adaptive filter.
出处 《常州大学学报(自然科学版)》 CAS 2015年第2期64-67,共4页 Journal of Changzhou University:Natural Science Edition
关键词 数字降噪耳机 自适应滤波器 滤波-x最小均方差 预测滤波器 digital noise cancellation headphone adaptive filter filtered-x least mean square prediction filter
  • 相关文献

参考文献11

二级参考文献68

  • 1黄振远,朱剑平.自适应滤波LMS类算法探究[J].现代电子技术,2006,29(24):52-54. 被引量:10
  • 2[1]Widrow B, Schur D, Shaffer S. On adaptive inverse control [A]. In Proc. 15th Asilomar Conf. [C]. USA: Santa Clara,1981.
  • 3[2]Burgess J C. Active adaptive sound control in a duct: a computer simulation [J]. J. Acoust. Amer.,1981,70(9):715-726.
  • 4[3]Esch J. Prolog to active noise control systems--algorithms and DSP implementation [J]. Proceedings of the IEEE, 1999,87(6):941-942.
  • 5[4]Freudendurg J S. Right half plane poles and zero design tradeoffs in feedback systems [J]. IEEE transactions on automatic control, 1985,AC-30:555-565.
  • 6[5]Miu D K. Physical interpretation of transfer function zeros for simple control systems with mechanical flexibilities[J]. Journal of Dynamic System Measurement and Control, 1991,113:419-424.
  • 7[6]Bouchard M, Paillard B, Dinh C T L. Improved training of neural networks for the nonlinear active noise control of sound and vibration [J]. IEEE transactions on neural networks, 1999,10(2):391-401.
  • 8[7]Strauch P, Mulgrew B. Active control of nonlinear noise processes in a linear duct [J]. IEEE transactions on signal processing, 1998,46(9):2404-2412.
  • 9[8]Bai M R, Chen H P. Development of a feedforward active noise control system by using the H2 and H∞model matching principle [J]. Journal of Sound and Vibration, 1997,201(2):189-204.
  • 10[11]Nelson P A, Elliot S J. Active Control of Sound [M]. London: Academic Press,1992.

共引文献47

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部