摘要
On-wafer S-parameter de-embedding techniques from 0.1 to 110 GHz are researched. The solving re- suits of thru-reflect-line (TRL) and line-reflect-match (LRM) de-embedding algorithms, when the input and output ports are asymmetric, are given. The de-embedding standards of TRL and LRM are designed on an InP substrate. The validity of the de-embedding results is demonstrated through two passive components, and the accuracy of TRL and LRM de-embedding techniques is compared from 0.1 to 110 GHz. By utilizing an LRM technique in 0.1- 40 GHz and a TRL technique in 75-110 GHz, the intrinsic S-parameters of active device HBT in two frequency bands are obtained, and comparisons of the extracted small-signal current gain and the unilateral power gain before and after de-embedding are presented. The whole S-parameters of actual DUT from 0.1 to 110 GHz can be obtained by interpolation.
On-wafer S-parameter de-embedding techniques from 0.1 to 110 GHz are researched. The solving re- suits of thru-reflect-line (TRL) and line-reflect-match (LRM) de-embedding algorithms, when the input and output ports are asymmetric, are given. The de-embedding standards of TRL and LRM are designed on an InP substrate. The validity of the de-embedding results is demonstrated through two passive components, and the accuracy of TRL and LRM de-embedding techniques is compared from 0.1 to 110 GHz. By utilizing an LRM technique in 0.1- 40 GHz and a TRL technique in 75-110 GHz, the intrinsic S-parameters of active device HBT in two frequency bands are obtained, and comparisons of the extracted small-signal current gain and the unilateral power gain before and after de-embedding are presented. The whole S-parameters of actual DUT from 0.1 to 110 GHz can be obtained by interpolation.
基金
Project supported by the National Natural Science Foundation of China(No.61401457)