期刊文献+

甘油脱水合成丙烯醛ZSM-5催化剂的孔结构和酸性调控 被引量:4

Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein
下载PDF
导出
摘要 研究了ZSM-5孔结构和表面酸性对甘油脱水合成丙烯醛反应性能的影响.在碱浓度为0.2 mol?L-1的Na OH溶液中,分别在65和85°C条件下对ZSM-5进行化学刻蚀,成功地制备了含微介孔的ZSM-5催化剂,提高了催化剂的表面强酸密度.碱处理后的ZSM-5催化剂在甘油脱水反应中的稳定性得到显著提高,在ZSM-5-at85(经85°C碱处理的ZSM-5)催化剂上甘油转化率在反应10 h后仍可保持95%以上,丙烯醛选择性达到78%.采用N2吸附-脱附等温线、X射线粉末衍射(XRD)、27Al固体核磁共振(27Al MAS-NMR)和透射电子显微镜(TEM)等手段对ZSM-5结构和表面性质进行了表征,实验结果表明在碱处理过程中骨架中的硅发生了溶脱现象,在分子筛表面上形成了大量介孔,但是ZSM-5的MFI拓扑结构没有发生变化,骨架中的大部分铝得到保持.X射线光电子能谱(XPS)、X射线荧光光谱(XRF)和氨气程序升温脱附(NH3-TPD)证实了在碱处理后ZSM-5分子筛外表面的Si/Al摩尔比低于其骨架中的比例,由此表明脱硅现象主要发生在ZSM-5的外表面,在新产生的介孔区域由于Si/Al摩尔比的降低使得强酸密度得到提高.具有微介孔结构和较高酸密度的ZSM-5催化剂增强了反应物扩散性能和容碳能力,这对于提高甘油脱水合成丙烯醛催化剂的活性和稳定性起到了关键作用. Pore structure and acidity of ZSM-5 catalysts were successfully regulated by alkali treatment. ZSM-5 was etched in 0.2 mol· L^-1 Na OH solution at 65 and 85 ℃. Micro- mesoporous ZSM- 5 catalysts were successfully prepared with a high density of acidic sites. The activity and stability were significantly enhanced with alkali-treated ZSM-5, giving a conversion of glycerol above 95%, with selectivity for acrolein of 78% after10 h compared with a ZSM-5-at85(alkali-treated at 85 ℃ catalyst. Characterization of N2 adsorption and desorption isotherms, X-ray diffraction(XRD),27 Al mass atomic spectroscopy-nuclear magnetic resonance(27Al MAS-NMR), and transmission electron microscopy(TEM) were performed to interpret the morphology and surface properties. The results reveal that the Si in the framework of ZSM-5 was leached out by alkali treatment,and many mesopores were formed on the ZSM-5 surface. However, the MFI topology did not change and Al was mainly integrated within the framework. X-ray photoelectron spectroscopy(XPS), X-ray fluorescence(XRF),and NH3-temperature-programed desorption(NH3-TPD) experiments demonstrated that the molar ratio of Si/Al on the external surface was lower than that in the framework, indicating that more Si on the external surface of ZSM-5 was leached by alkali treatment, while the acidic density increased because of the lower molar ratio of Si/Al near newly formed mesopores. ZSM-5 catalysts with mesopores and higher acidic density enhance reactant diffusion and coking tolerance, which improves the activity and stability during glycerol dehydration.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第5期965-972,共8页 Acta Physico-Chimica Sinica
基金 上海市科学技术委员会资助国际合作项目(14120700700) 重点实验室基金(11JC1400400)资助~~
关键词 微介孔ZSM-5 表面酸性 碱处理法 甘油脱水 丙烯醛 Micro-mesoporous ZSM-5 Surface acidity AIkalitreatment Dehydration of glycerol Acrolein
  • 相关文献

参考文献38

  • 1Louren?o,J.P.; Macedo,M.I.; Fernandes,A.Catal.Commun.2012,19,105.doi: 10.1016/j.catcom.2011.12.029.
  • 2Benjamin,K.; Bastien,P.; Franck,D.ACS Catal.2013,3,1819.doi: 10.1021/cs400354p.
  • 3Behr,A.; Eilting,J.; Irawadi,K.; Leschinski,J.; Lindner,F.Green Chem.2008,10,13.doi: 10.1039/B710561D.
  • 4Pagliaro,M.; Ciriminna,R.; Kimura,H.; Rossi,M.; Pina,C.D.Angew.Chem.Int.Edit.2007,46,4434.
  • 5Jo,B.Y.; Kim,E.J.; Moon,S.H.Appl.Catal.A: Gen.2007,332,257.doi: 10.1016/j.apcata.2007.08.025.
  • 6Luiz,G.P.; Rosiane,N.D.; Teresita,G.J.Catal.2013,300,102.doi: 10.1016/j.jcat.2013.01.003.
  • 7Kim,Y.T.; Jung,K.D.; Park,E.D.Microporous Mesoporous Mat.2010,131,28.doi: 10.1016/j.micromeso.2009.11.037.
  • 8Jia,C.J.; Liu,Y.; Schmidt,W.; Lu,A.H.; Schüth,F.J.Catal.2010,269,71.doi: 10.1016/j.jcat.2009.10.017.
  • 9Kim,Y.T.; Jung,K.D.; Park,E.D.Appl.Catal.A: Gen.2011,393,275.doi: 10.1016/j.apcata.2010.12.007.
  • 10Gu,Y.L.; Cui,N.Y.; Yu,Q.J.Appl.Catal.A: Gen.2012,429,9.

二级参考文献11

  • 1吴越,叶兴凯,杨向光,王新平,楚文玲,胡玉才.杂多酸的固载化─关于制备负载型酸催化剂的一般原理[J].分子催化,1996,10(4):299-319. 被引量:85
  • 2Groll H P A, George H. US 2 042 224. 1936
  • 3Chai S H, Wang H P, Liang Y, Xu B Q. Green Chem, 2007, 9(10): 1130
  • 4Chai S H, Wang H P, Liang Y, Xu B Q. J Catal, 2007, 250(2) : 342
  • 5Zhou Ch J, Huang C J, Zhang W G, Zhai H Sh, Wu H L, Chao Z Sh. Stud Surf Sci Catal, 2007, 165:527
  • 6Ott L, Bicker M, Vogel H. Green Chem, 2006, 8(2): 214
  • 7Watanabe M, Lida T, Aizawa Y, Aida T M, Inomata H. Bioresource Technol, 2007, 98(6) : 1285
  • 8Kozhevnikov I V. Chem Rev, 1998, 98(1): 171
  • 9Tsukuda E, Sato S, Takahashi R, Sodesawa T. Catal Commun, 2007, 8(9): 1349
  • 10Izuml Y, Hasebe R, Urabe K. J Catal, 1983, 84(2) : 402

共引文献19

同被引文献75

  • 1刘蓉,王铁峰,刘畅,金涌.高选择性和稳定性的CsPW/Nb_2O_5催化剂用于甘油脱水制备丙烯醛(英文)[J].催化学报,2013,34(12):2174-2182. 被引量:8
  • 2杨凯华,蒋剑春,聂小安,徐秋云.生物柴油的制备及其副产物粗甘油分离与精制工艺的研究[J].生物质化学工程,2006,40(1):1-4. 被引量:36
  • 3Ciriminna R,Pina C D,Rossi M,et al. Understanding the glycerol market[J]. Eur J Lipid Sci Tech,2014,116(10):1432 - 1439.
  • 4Behr A,Eilting J,Irawadi K,et al. Improved utilisation of renewable resources:New important derivatives of glycerol[J]. Green Chem,2008,10(1):13 - 30.
  • 5Bagheri S,Julkapli N M,Yehye W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renew Sust Energ Rev,2015,41(41):113 - 127.
  • 6Liu Lu,Ye X P,Bozell J J. A comparative review of petroleum-based and bio-based acrolein production[J]. ChemSusChem,2012,5(7):1162 - 1180.
  • 7Ayoub M,Abdullah A Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry[J]. Renew Sust Energ Rev,2012,16(5):2671 - 2686.
  • 8Katryniok B,Paul S,Dumeignil F. Recent developments in the field of catalytic dehydration of glycerol to acrolein[J]. ACS Catal,2013,3(8):1819 - 1834.
  • 9Alhanash A,Kozhevnikova E F,Kozhevnikov I V. Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt[J]. Appl Catal,A,2010,378(1):11 - 18.
  • 10Chai Songhai,Wang Haopeng,Liang Yu,et al. Sustainable production of acrolein: Investigation of solid acid-base catalysts for gas-phase dehydration of glycerol[J]. Green Chem,2007,9(10):1130 - 1136.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部