期刊文献+

基于词项关联关系与归一化割加权的微博用户兴趣模型

Microblog user interest modeling based on term correlation and normalized cut weighting scheme
下载PDF
导出
摘要 提出一种基于词项关联关系与归一化割加权非负矩阵分解的微博用户兴趣模型构建方法。该方法首先基于词分布上下文语义相关性来建立词项关联关系矩阵刻画词项间相似度,然后应用归一化割加权非负矩阵分解算法获取用户—主题矩阵,产生用户感兴趣的微博主题聚类结果。实验表明,此方法能有效地进行微博主题聚类,并支持微博用户兴趣模型构建。 This paper proposed a non-negative matrix factorization based on the term correlation and normalized cut weighting for miero-blog user interest model. First, it constructed a term correlation matrix using term distribution context to better ex- plain similarities of terms, and then presented a Ncut-weighted non-negative matrix factorization ( NCUT_WEIGHTED NMF) method to obtain the matrix of user-topic ,which showed the clustering results of interest to the user. Experiments show that this method can effectively cluster micro-blog topic to support miero-blog user interest model.
出处 《计算机应用研究》 CSCD 北大核心 2015年第6期1630-1633,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61163039 61363058) 甘肃省教育厅资助项目(2013A-016) 甘肃省青年科技基金(145RJYA59) 中国科学院计算技术研究所智能信息处理重点实验室开放基金(IIP2014-4)
关键词 词关联关系矩阵 归一化割 非负矩阵分解 微博用户兴趣模型 term correlation matrix normalized cut nonnegative matrix factorization microblog user interest model
  • 相关文献

参考文献12

  • 1陈文涛,张小明,李舟军.构建微博用户兴趣模型的主题模型的分析[J].计算机科学,2013,40(4):127-130. 被引量:30
  • 2Yan Xiaohui,Guo Jiafeng,Liu Shenghua,et al.Clustering short text using Ncut-weighted non-negative matrix factorization[C]//Proc of the 21st ACM International Conference on Information and Knowledge Management.New York:ACM Press,2012:2259-2262.
  • 3Ma Huifang,Zhao Weizhong,Shi Zhongzhi.A nonnegative matrix factorization framework for semi-supervised document clustering[J].Knowledge and Information Systems,2013,36(3):629-651.
  • 4Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
  • 5Yan Xiaohui,Guo Jiafeng,Liu Shenghua,et al.Learning topics in short texts by non-negative matrix factorization on term correlation matrix[C]//Proc of SIAM International Conference on Data Mining.2013.
  • 6Shi Jianbo,Malik J.Normalized cuts and image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Yu S X,Shi Jianbo.Multiclass spectral clustering[C]//Proc of the 9th IEEE International Conference on Computer Vision.2003:313-319.
  • 8Lee D D,Seung H S.Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems.Berlin:Springer,2000:556-562.
  • 9任强.推荐系统关键技术研究[D].上海:华东师范大学,2012.
  • 10Zhao Ying,Karypis G.Criterion functions for document clustering,TR 01-40[R].Minneapolis:University of Minnesota,2001.

二级参考文献18

  • 1Blei D M, Lafferty J. Text Mining.. Theory and Applications [M]. Chapter Topic Models, Taylor and Francis, London, 2009.
  • 2Blei D M,Ng A Y,Jordan M I. Latent Dirichlet Allocation[J]. Journal of Maehine Learning Research, 2003,3(4/5) : 993-1022.
  • 3Steyvers M,Griffiths T. Probabilistic Topic Models[M]. Latent Semantic Analysis:A Road to Meaning, Laurence Erlbaum, 2005.
  • 4Heinrich G. Parameter estimation for text analysis[R]. Techni- cal report, http://www, arbylon, net/publications/textest, Ver- sion 2,2008.
  • 5Koller D,Friedman N. Probabilistie Graphical Models: Principles and Techniques[M]. MIT Press, 2009.
  • 6Zhao Xin, Jiang Jing, Weng Jian-shu, et al. Comparing Twitter and traditional media using topic models[C] //Proceedings of the 33rd European Conference on Information Retrieval. Springer- Verlag Berlin, Heidelberg, 2011 : 338-349.
  • 7Weng Jian-shu, Lim E-P,Jiang Jing, et al. TwitterRank: finding topic-sensitive influential twitterers[C]//Proceedings of the 3th ACM International Corfference on Web Search and Data Mining. New York City, NY,USA, 2010:261-270.
  • 8Hong Liang-jie,Davison B D. Empirical study of topic modeling in Twitter[C] // Proceedings of the First Workshop on Social Media Analytics. Washington DC, USA, 2010: 80-88.
  • 9Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author- topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press Arlington, Virginia, United States, 2004:487-494.
  • 10Steyvers M, Smyth P, Rosen-Zvi M, et al. Probabilistic author- topic models for information discovery[C]//Proceedings of the Tenth ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining. Seattle,WA,USA,2004:306-315.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部