期刊文献+

基于差分进化的回溯搜索优化算法研究与改进 被引量:7

Study and improvement of backtracking search optimization algorithm based on differential evolution
下载PDF
导出
摘要 针对回溯搜索优化算法收敛速度慢和易早熟的缺点,提出了一种改进算法。首先,利用麦克斯韦分布产生变异尺度系数,并在此基础上提出了一种新的变异算子。新变异算子有效地加快了收敛速度。同时,在变异策略中添加了一种选择机制以增加全局搜索能力,避免出现早熟收敛。通过与差分进化的变异策略对比和经典测试函数的测试,实验结果表明改进算法不仅具有较快的收敛速度,而且具有良好的全局搜索能力。 For slow convergence and easiness to trap in local optimum of backtracking search optimization algorithm, this paper presented an improved algorithm. It used Maxwell-Bohzmann distribution to generate mutation scale factor and redesigned the mutation strategy based on Maxwell-Bohzmann distribution, which improved convergence speed effectively. Moreover, it added a selection mechanism to mutation strategy to enhance global search ability, which could avoid premature convergence. Through comparing with mutation strategy of differential evolution and numerical experiments on a suite of standard test functions, the fact shows that the improved algorithm not only has faster convergence speed, but also good global search capability.
出处 《计算机应用研究》 CSCD 北大核心 2015年第6期1653-1656,1662,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(11301408)
关键词 回溯搜索优化算法 差分进化算法 麦克斯韦分布 变异尺度系数 选择机制 早熟收敛 backtracking search optimization algorithm differential evolution algorithm Maxwell distribution mutation scale factor selection mechanism premature convergence
  • 相关文献

参考文献13

  • 1Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of Micro Machine and Human Science.Washington DC:IEEE Computer Society,1995:39-43.
  • 2Karboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 3Storn R,Price K.Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 4Liang Jing,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Trans on Evolutionary Computation,2006,10(3):281-295.
  • 5Zambrano-Bigiarini M,Clerc M,Rojas R.Standard particle swarm optimization 2011 at CEC-2013:a baseline for future PSO improvements[C]//Proc of IEEE Congress on Evolutionary Computation.Washington DC:IEEE Computer Society,2013:2337-2344.
  • 6Brest J,Greiner S,Boskovic B,et al.Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems[J].IEEE Trans on Evolutionary Computation,2006,10(6):646-657.
  • 7Qin A K,Huang V L,Suganthan P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Trans on Evolutionary Computation,2009,13(2):398-417.
  • 8Zhu Guopu,Kwong S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics and Computation,2010,217(7):3166-3173.
  • 9Civicioglu P.Backtracking search optimization algorithm for numerical optimization problems[J].Applied Mathematics and Computation,2013,219(15):8121-8144.
  • 10胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334

二级参考文献30

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc IEEE International Conference on Neural Networks[ C]. USA: 1EEE Press, 1995. 1942 - 1948.
  • 4Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[ A]. Proc Sixth International Symposium on Mi- cro Machine and Human Science [ C ]. Nagoya, Japan: IEEE Press, 1995.39 - 43.
  • 5Eberhart R C, Simpson P K, Dobbins R W. Computational In- telligence PC Tools [ M ]. Boston, MA: Academic Press Profes- sional, 1996.
  • 6Shi Y, Eberhart R C. Parameter selection in particle swarm op- timization[A], Proc 7th Annual Conference on Evolutionary Programming[ C]. Washington DC: IEEE Press, 1998. 591 - 600.
  • 7Bergh F D, Engelbrecht A P. A study of particle swarm opti- mization particle trajectories~J]. Information Science,2006, 176 (8) :937 - 971.
  • 8Kazemibal, Mohanck. Multi-phase generalization of the particle swarm optimization algorithm[ A]. Proc the 2002 Congress on Evolutionary Computation[ C]. Honolulu: IEEE Computer Soci- ety,2002+ 489 - 497.
  • 9Shi Y, Eberhart R C. A modified particle swarm optimizer[ A]. Proc IEEE International Conference on Computation Intelli- gence[ C]. Anchorage: IEEE Press, 1998.69 - 73.
  • 10Sift Y, Eberhart R C. Fuzzy adaptive particle swarm optimiza- tion [A]. Proc IEEE International Congress on Evolutionary Computation[ C ]. Piscataway: IEEE Computer Society, 2001. 101 - 106.

共引文献399

同被引文献73

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部