期刊文献+

混合的SAR图像变化检测算法 被引量:2

Hybrid SAR image change detection algorithm
下载PDF
导出
摘要 为尽可能多地消除遥感图像变化检测过程中"伪变化"信息的影响,获得比较客观的感兴趣区域变化检测结果,针对遥感图像中SAR图像的特点,提出一种混合的SAR图像变化检测算法。对已配准好的图像进行Frost滤波,用邻域比值的方法构造差异图,对得到的差异图进行非下采样轮廓波变换(NSCT),对变换得到的高频子带和低频子带分别处理,用模糊C均值(FCM)聚类算法得到变化检测的结果。实验结果表明,该算法模型很好地保留了图像变化区域的细节,提高了变化检测准确性。 To get rid of the influence of pseudo-change as much as possible and obtain more obj ective test results in the regions of variation,a hybrid SAR image change detection algorithm was presented based on the characteristics of SAR image.Firstly,the images registered well were treated by filtering and then the difference image was constructed using the method of neighborhood ratio and processed using the method of nonsubsampled Contourlet transform (NSCT).The high-frequency and low-frequency sub-bands were handled.The results of change detection were obtained using the fuzzy C-means (FCM)clustering algorithm. Experimental results show that the proposed algorithm not only retains the details of the change region,but also improves the change detection accuracy.
出处 《计算机工程与设计》 北大核心 2015年第5期1256-1259,1273,共5页 Computer Engineering and Design
基金 教育部促进与美大地区科研合作与高层次人才培养基金项目(2012-1738)
关键词 遥感图像 邻域比值 非下采样轮廓波变换 低频子带 模糊C均值聚类算法 remote sensing image neighborhood ratio nonsubsampled Contourlet transform low-frequency sub-bands fuzzy C-means clustering algorithm
  • 相关文献

参考文献17

  • 1Bazi Y, Melgani F, Bruzzone L, et al. A genetic expectation maximization method for unsupervised change detection in multi- temporal SAR imagery [J]. International Journal of Remote Sensing, 2009, 30 (24): 6591-6610.
  • 2Bazi Y, Melgani F, Alsharari H. Unsupervised change detec- tion in multispectral remotely sensed imagery with level set methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (8): 3178-3187.
  • 3Badri Narayan Subudhi, Francesca Bovolo, Ashish Ghosh, et al. Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images [J]. Op- tics & Laser Technology, 2014, 57: 284-292.
  • 4余银峰,贾振红,覃锡忠,杨杰,庞韶宁.遥感图像变化检测算法研究[J].计算机工程与应用,2011,47(25):168-170. 被引量:3
  • 5Su Linzhi, Gong Maoguo, Sun Bo, et al. Unsupervised change detection in SAR images based on locally fitting model and semi-EM algorithm [J]. International Journal of Remote Sensing, 2014, 35 (2): 621-650.
  • 6Ashish Ghosh, Niladri Shekhar Mishra, Susmita Ghosh. Fuzzy clustering algorithms for unsupervised change detection, in remote sensing images [J]. Information Sciences, 2011, 181 (4): 699-715.
  • 7Aghababaee H, Amini J, Tzeng YC. Improving change detec- tion methods of SAR images using fractals [J] Scientia Iranica, 2013, 20 (1): 15-22.
  • 8Haikel Hichri, Yakoub Bazi, Nail Alajlan, et al. Interactive segmentation for change detection in multispectral remote-sen- sing images [J]. IEEE Geoscience and Remote Sensing Let- ters, 2013, 10 (2): 298-302.
  • 9朱贵良,宋瑞芳,樊学会.基于模糊贴近度的指纹匹配算法研究[J].计算机工程与科学,2010,32(12):50-52. 被引量:3
  • 10汪雅兰,贾振红,覃锡忠,杨杰,庞韶宁.基于NSCT域的自适应阈值遥感图像去噪方法[J].激光杂志,2011,32(1):10-11. 被引量:7

二级参考文献87

共引文献31

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部