期刊文献+

方程在数学建模中的思想及应用研究 被引量:1

Thought and Application Study of Equations in Mathematical Modeling
下载PDF
导出
摘要 数学建模是建立数学模型之后,通过计算得到的结果来解释和说明现实问题,并解释实际检验的过程。把方程引入到数学建模中一方面可以使学生更直接、更直观地理解"方程"这一含有未知数的数学不等式;另一方面可以激发学生对数学建模的兴趣和好奇心,扩展知识面。本文以常微分方程、差分方程、偏微分三种方程数学建模为例,进一步阐述方程建模的应用范围和实用价值。 Mathematical modeling is established after the mathematical model,and the result obtained through calculation is used to explain and illustrate the realistic problems and the process of the actual test as well. The equation introduced in a mathematical modeling can make students more directly and more intuitive understand the "mathematical inequalities which contain an unknown number"; on the other hand it can inspire students’ mathematical modeling interest and curiosity so as to expand the range of knowledge. Taking ordinary differential equations,difference equations,and partial differential equations of mathematical modeling for example,this paper further elaborates the application scope of equation modeling and practical value.
作者 白灏
出处 《湖北第二师范学院学报》 2015年第2期106-108,共3页 Journal of Hubei University of Education
基金 淮南职业技术学院科技基金项目(HKJ12-10) 安徽省高等学校省级优秀青年人才基金项目(2012SQRL259)
关键词 数学建模 常微分方程 差分方程 偏微分方程 mathematical modeling ordinary differential equation differential equation partial differential equation
  • 相关文献

参考文献4

二级参考文献19

共引文献12

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部