期刊文献+

人工模拟体液中Ti,Ti-6Al-4V合金和Ti-Ni形状记忆合金的缝隙腐蚀行为(英文) 被引量:2

Crevice Corrosion Behavior of CPTi, Ti-6Al-4V Alloy and Ti-Ni Shape Memory Alloy in Artificial Body Fluids
原文传递
导出
摘要 采用电化学方法研究了工业纯钛、Ti-6Al-4V合金和Ti-Ni SMA在Ringer’s人工模拟体液中缝隙腐蚀行为。Ringer’s人工体液中恒电位400 m V的试验结果表明,工业纯钛、Ti-6Al-4V合金和Ti-Ni SMA缝隙试样均发生缝隙腐蚀,随着介质温度的升高,缝隙腐蚀倾向加剧。在Ringer’s人工模拟体液中Ti-6Al-4V合金的腐蚀电位较正,反应电阻增大,阳极极化性能优于工业纯钛和Ti-Ni SMA,提高了抗缝隙腐蚀性能。在Ringer’s人工模拟体液中推导出工业纯钛、Ti-6Al-4V合金和Ti-Ni SMA缝隙试样的缝隙腐蚀动力学方程为:iT,CPTi=0.028 e-2×10-4 t,iT,Ti-6Al-4V=0.0149 e-3×10-4 t,和iT,Ti-Ni SMA=0.4712 e-7×10-4 t表明缝隙腐蚀过程受缝隙表面氯化物盐膜的溶解控制。 Crevice corrosion behavior of commercial pure titanium (CP Ti), Ti-6A1-4V alloy and Ti-Ni Shape Memory Alloy (SMA) were investigated through an electrochemical methods in Ringer's artificial body fluids. The results indicate that the crevice corrosion occurs for all alloys in Ringer's artificial body fluids at potential of 400 mV. The crevice corrosion for all alloys increases with the increase of corrosion solution temperature. The corrosion potential of Ti-6A1-4V alloy is more positive than that of CPTi and Ti-Ni SMA, manifesting that the anodic polarization characterization of Ti-6A1-4V is better than those of both CP Ti and Ti-Ni SMA. So its crevice corrosion resistance is enhanced. The dynamic equations of crevice corrosion for CP Ti, Ti-6A1-4V and Ti-Ni SMA are as follows: iT,CPTi=0.028 e-2×10-4 t,iT,Ti-6Al-4V=0.0149 e-3×10-4 t,巨iT,Ti-Ni SMA=0.4712 e-7×10-4 t, which indicate that the process of the crevice corrosion is controlled by the dissolution of chloride salt film on its surface.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第4期781-785,共5页 Rare Metal Materials and Engineering
基金 National High Technology Research and Development Program of China('863'Program)(2009AA05Z120)
关键词 工业纯钛 TI-6AL-4V TI-NI SMA Ringer’s人工体液 缝隙腐蚀 crevice corrosion CP Ti Ti-6AI-4V alloy Ti-Ni SMA Ringer's artificial body fluids
  • 相关文献

参考文献14

  • 1SchiffN, Grosgogeat B, Lissac M et al. Biomaterials[J], 2002, 23:1995.
  • 2Kuphasuk C, Oshida Y, Andres C Jet al. J Prosthet Dent[J], 2001, 85:195.
  • 3Masmoudi M, Capek D, Abdelhedi R et al. Surface & Coatings Technology[J], 2006, 200(24): 6651.
  • 4Liang C H, Huang N /3. Journal Biomedical Materials Research PartA [J], 2009, 89A (1): 266.
  • 5Li M G, Sun D Q, Qiu X Met al. Mater Sci Eng A [J], 2006, 441:271.
  • 6Karayan A I, Park S W, Lee K M. Materials Letters [J], 2008, 62(12-13): 1843.
  • 7Wu B, Liang C H, Wang E Rare Metal Materials and Engineering [J], 2010, 39(12): 2069 (in Chinese).
  • 8Liang C H, Zheng R F, Huang N 13 et al. J Mater Sei Mater Med [J], 2010, 21(5): 1421.
  • 9Leng Chongyan, Zhou Rong, Zhang Xu. Rare Metal Materials and Engineering [J], 2010, 39(8): 1354 (in Chinese).
  • 10Lavos-Valereto I C, Costa I, Wolynec Set al. J Biomed Mater Res[J], 2002, 63(5): 664.

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部