期刊文献+

碳化物对铌基多相合金力学性能和组织结构的影响 被引量:2

Effect of Carbide Additions on the Mechanical Properties and Microstructure of Nb-based Multiphase Alloy
原文传递
导出
摘要 采用纳米压痕和原子力显微镜对Nb-21Ti-4C-x Al(x:0,5,10,15 at%,下同)、Nb-35Ti-4C及Nb-25Ti-8C合金Nbss、(Nb,Ti)C、Nb3Al及相界面的力学性能和变形行为进行了研究。研究表明:Ti、Al元素合金化能有效提高Nbss的硬度,且Al强化效果优于Ti;高硬度的碳化物、Nb3Al与Nbss界面结合良好是理想的增强相。热处理后(Nb,Ti)C内部析出二次Nbss,改善了碳化物的变形行为,提高了韧性;热处理后Nbss内部组织均匀化及位错密度降低导致Nbss硬度下降。Ti、Al、C原子含量变化及热处理对Nbss的弹性模量影响不大。 The mechanical properties and deformation behaviors of Nbss, (Nb, Ti)C, Nb3A1 and the interface for as cast and heat treated Nb-21Ti-4C-xAI (x=0, 5, 10, 15 at%), Nb-35Ti-4C and Nb-25Ti-8C alloys were investigated using nanoindentation and atomic force microscopy (AFM). The results show that Ti and A1 can effectively improve the hardness of Nbss and the capacity of solid solution strengthening of A1 is better than that of Ti. The hard carbide and Nh3A1 which has a strong bonding with Nbss matrix can enhance the alloy before and after heat treatment. The eutectoid transformation of the large-sized carbide after heat treatment leads to less possibility for the forming of cracks on the carbide surface, which in turn improves the toughness. After heat treatment, the hardness of Nbss matrix decreases due to the homogenization of matrix microstructure and the decrease in the dislocation density. However, the deviations of the elastic modulus are unconspieuous with the change of the Ti, A1, C fraction and heat treatment for all alloys.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第4期901-907,共7页 Rare Metal Materials and Engineering
基金 国家自然科学基金资助(51004077)
关键词 纳米压痕 力学性能 Nb-Ti-Al合金 碳化物 nanoindentation mechanical properties Nb-Ti-A1 alloy carbide
  • 相关文献

参考文献18

  • 1王占学,刘增文,蔡元虎,李斌.推重比15一级发动机关键技术及分析[J].航空发动机,2010,36(1):58-62. 被引量:16
  • 2Ding R C Jones I P, Jiao H S. Mater Sei EngA[J], 2007, 485:87.
  • 3Qu N Q, Chen Y L. World Nonferrous Metals[J], 1998, 5:16.
  • 4Zhang X M. Rare Metals Letters[J], 2005, 24:3.
  • 5Yao D Z, Cai R. Corrosion Science[J], 2009, 51:364.
  • 6Sheftel E N, Bannykh O A. Int J Refractory Metal Hard Mater[J], 1993, 12:303.
  • 7Sikka V K, Loria E A. Mater Sci Eng A[J], 1997, 239-240:745.
  • 8Gnanamoorthy R, Hanada S. Mater Sei EngA[J], 1996, 207:129.
  • 9Bewlay B P, Jackson M R. MRS Bulletin[J], 2003, 28:646.
  • 10Zelenitsas K. Mater Sci Eng A[J], 2006, 416:269.

二级参考文献41

  • 1王永明,乔谓阳,李立君.计算机模拟技术在航空发动机设计中的应用[J].燃气涡轮试验与研究,2005,18(1):1-8. 被引量:5
  • 2张小明.日本Nb基超合金和复合材料研究新进展[J].稀有金属快报,2005,24(2):3-7. 被引量:5
  • 3Sellers J F, Daniele C J. DYNGEN-A Program for Calculating Steady-state Transient Performance of Turbojet and Turbofan Engines [R]. NASA TND-7901,1975.
  • 4Keith Beker, Patrick Biltgen. A Single Stage to Orbit Turbine Based Combined Cycle Propulsion System [C]. Undergraduate Thesis. Georgia Institute of Technology. June,6,2003.
  • 5Kandebo S W. General Elective Tests Forward Swept Fan Technology [ Z]. Aviation Week &Space Technology , 1996.
  • 6Lejambre C R, Zacharias R M, Biederman A J, et al. Development and application of a multistage Navicr-Stokes flow solver, Part lI : application to a high pressure compressor design [ J ]. ASME Journal of Turbom achinery,1998, 120 (4) : 215-223.
  • 7Guillermo Paniagua, Szabolcs Szokol, Richard Varvill. Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System [J]. Journal of Propulsion and Power ,2008, 24 (6):1269-1277.
  • 8Walston S, Cetel A, MacKay R, et al. Joint Development of a Fourth Generation Single Crystal Superal [R]. NASA/rM-2004-213062.
  • 9Gilbert B. Directional Control of Large Mass Flows by Fluidics. ASME 3rd Triennial International Symposium on Fluid Control [C]. Measurement, and Visualization, August 1991.
  • 10Reginald G W. Huidic Thrust Vectoring and Throat Control Exhaust Nozzle[R]. AIAA 2002-4060, 2002.

共引文献21

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部