期刊文献+

QT500表面等离子喷涂8YSZ热障涂层TGO的残余应力状态及数值分析 被引量:4

State of Residual Stress and Numerical Analysis of TGO in Plasma Sprayed 8YSZ Thermal Barrier Coating on QT500
原文传递
导出
摘要 分别采用超音速火焰喷涂(HOVF)和等离子喷涂(APS)在QT500球墨铸铁基体上制备Co Ni Cr Al Y粘结层(BC)和8YSZ陶瓷隔热层(TC),研究了试样在1050℃高温环境中经过2.5、8、15、50、100 h恒温氧化后体系的应力情况。利用扫描电子显微镜(SEM)对热生长氧化物(TGO)的微观形貌进行观察与分析,并用拉曼荧光光谱仪(RFS)分析了其应力的分布及变化规律,并通过力学模型进行了残余应力的数值计算。结果表明:由陶瓷层与粘结层之间的热失配而导致TGO中产生残余压应力,其最大值范围为1.9557-1.9603 GPa;残余压应力在高温氧化初始阶段逐渐减小,至15 h达到最小值,随之逐渐增大后趋于稳定;在恒温阶段,θ-Al2O3转变为α-Al2O3所引起的体积收缩是TGO中残余应力减小并趋于稳定的直接原因。 CoNiCrA1Y bond coat and ZrO2-8wt%YzO3 (8YSZ) top coat were deposited on QT500 nodular cast iron by High Velocity Oxy-fuel (HVOF) and Air Plasma Spraying (APS) processes, respectively. The sprayed samples were heat treated in a furnace at 1050 ℃ for 2.5, 8, 15, 50 and 100 h. Afterwards, the growth of Thermally Grown Oxide (TGO) was observed by SEM and the variation of TGO stress was analyzed by Raman Fluorescence Spectrometer. A numerical model was established to evaluate the stress distribution in the TGO. Results show that TGO was in a compressive stress state, which was derived from thermal mismatch between bond coat and top coat. The highest residual stress in the TGO ranged from 1.9557 to 1.9603 GPa, which decreased gradually at the initial stage, and then reached its minimum at 15 h, but increased to a constant value in the latter stage. The volume contraction caused by the process of 0-A1203 to a-A1203 phase transformation is a dominant factor for the TGO residual stress variation.
机构地区 天津大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第4期1024-1029,共6页 Rare Metal Materials and Engineering
基金 天津市自然科学基金(12JCYBJC12300) 高等学校博士学科点专项科研基金资助(20120032110031)
关键词 热障涂层 拉曼荧光光谱 残余应力 应力分析模型 TBC Raman fluorescence spectrum residual stress numerical analysis
  • 相关文献

参考文献20

  • 1Padure N P, Gell M, Jordan E H. Science[J], 2002, 296:280.
  • 2CaoXueqiang(曹学强).热障涂层材料[M].Beijing:Science Press,2007.
  • 3Hsueh C H, Jr Fuller E R. Scripta Mater[J], 2000,42:781.
  • 4ZhouXia(周霞),TangZhanfei(唐战飞),QuGuohui(屈国辉).稀有金属材料与工程[J],2010,527:2327.
  • 5SwainMV(斯温).陶瓷的结构与性能[M].Beijing:SciencePress,1998.
  • 6YaoGuofeng(姚国风),MaHongmei(马红梅).金属热处理[J],2005,30(10):43.
  • 7GongShengkai(宫声凯)jChenXiaomei(陈晓梅),ZhangYue(张跃)eta1.稀有金属材料与工程[J],2005,34(S1):636.
  • 8HanYujun(韩玉君),WangZhiping(T志平),DongYun(董允)eta1.稀有金属材料与工程[J],2010,39(S1):182.
  • 9王志平,韩志勇,陈亚军,丁昆英.热障涂层的三维界面形貌与热应力关系[J].焊接学报,2011,32(1):21-24. 被引量:5
  • 10XingYuming(邢玉明).码垛机器人的动态特性分析[D].Tianjin:Tianjin University,2009.

二级参考文献9

  • 1王桂兰,胡帮友,严波,张海鸥.三维等离子喷涂的涂层生长过程温度场数值模拟[J].固体力学学报,2005,26(2):151-156. 被引量:8
  • 2姚国凤,马红梅,王晓英,罗志久,高雪飞,陈光南.热障涂层界面形貌尺寸与残余应力的关系[J].金属热处理,2005,30(10):43-46. 被引量:14
  • 3张红松,王富耻,马壮,王全胜,冼文锋,成志芳.等离子喷涂ZrO_2热障涂层的热冲击性能[J].机械工程材料,2007,31(1):86-88. 被引量:12
  • 4Pirge G, Koc I, Basaran A. On the application possibility of thermal barrier coatings in space practices[ C]// Proceedings of the 3rd Internal Conference on, Recent Advances in Space Technologies, 2007, 152 - 157.
  • 5Xu Yingqiang, Li Shijie, Jin Shaojie. Simulation of interfacial stress in TBCs with oxidation-resistance interlayer under thermal loading[ C ]//2009 Second International Conference on Information and Computing Science, 2009, 296 -299.
  • 6Karlsson A M, Hutchinson J W, Evans A G. A fundamental model of cyclic instabilities in thermal barrier systems[J]. Journal of the Mechanics and Physics of Solids, 2002, 50, 1565 - 1589.
  • 7Jinnestrand M, Sjostrorn S. Investigation by 3D FE simulations of desalination crack initiation in TBC caused by alumina growth [ J ]. Surface and Coatings Technology, 2001, B5 ( 2 - 3 ), 188 - 195.
  • 8Sfar K, Aktaa J, Munz D. Numerical investigations of residual stress fields and crack behavior in TBC systems [ J ]. Materials Science and Engineering, 2002, 333:351 -360.
  • 9徐颖强,汪震隆,李剑锋.含抗氧化夹层热障涂层界面应力特性的研究[J].机械强度,2009,31(4):685-688. 被引量:2

共引文献4

同被引文献45

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部