期刊文献+

超声速旋流分离器内天然气液化过程研究 被引量:8

Study on Natural Gas Liquefaction Process within Supersonic Cyclone Separator
下载PDF
导出
摘要 目前关于超声速旋流分离器内天然气凝结液化过程的研究较少,为此,通过数值模拟计算对Laval喷管内气体凝结液化过程进行研究,并分析喷管结构对凝结液化的影响。研究结果表明,甲烷气体在喷管内发生了自发凝结现象,但凝结冲波现象并不明显,这与甲烷气体凝结过程液滴生长较慢且凝结潜热较小有关;随着喷管膨胀率的增大,气体过冷度增加越快,其能更早达到凝结液化条件(Wilson点);喷管内最大成核率、液滴数目及湿度(液化率)均随膨胀率的增大而增大,膨胀率从6 000 s-1增大到12 000 s-1,成核率最大值增加154.8%,液滴数目增加79.5%,喷管出口湿度增加51.7%,较大程度提高了液化率;对于扩张段长度固定的喷管,过大膨胀率将导致气体温度或压力低于三相点而无法液化;不同膨胀率及不同入口条件下液化率均较低,需进一步开展多级液化研究。 Few studies have been conducted on the natural gas condensation and liquefaction process within supersonic cyclone separator. The natural gas condensation and liquefaction process within the Laval nozzle is researched by numerical simulation and the effect of the nozzle structure on the condensation liquefaction is analyzed. The results show that the methane gas condenses spontaneously in the nozzle. But the condensation shock waves phenomenon is not obviously, which is a result of the slow droplet growth and little latent heat of condensa- tion during methane gas condensation process. With the nozzle expansion rate increases, the gas undercooling increment becomes larger, and the gas will reach its condensation liquefaction conditions ( Wilson point) sooner. The maximum nucleation rate, the number of droplets and humidity (liquefaction rate) within the nozzle increases with the increase of expansion rate. When the expansion rate increase from 6 000 s^-1 to 12 000 s^-1, the maximum nucleation rate, the number of droplets and the nozzle outlet humidity will respectively increase 154. 8% , 79.5% and 51.7 % , thus greatly improving liquefaction rate. For the fixed length expansion nozzle, excessive expansion rate will make the gas temperature or pressure lower than the triple point, and unable to liquefy the gas. Lower liquefaction rate will be obtained under different expansion rate and inlet conditions, so that multi-stage liquefaction research need to be further studied.
出处 《石油机械》 2015年第5期87-91,100,共6页 China Petroleum Machinery
基金 国家自然科学基金项目"基于流体高速膨胀特性的天然气液化机理研究"(51274232) 国家自然科学基金项目"基于超音速膨胀过程的天然气脱CO2过程机理研究"(51406240)
关键词 超声速旋流分离器 天然气液化 喷管 膨胀率 自发凝结 数值模拟 supersonic cyclone separator natural gas liquefaction nozzle expansion rate spontaneous condensation numerical modeling
  • 相关文献

参考文献10

  • 1Wen Chuang, Cao Xuewen, Yang Yan, et al. An un- conventional supersonic liquefied technology for natural gas [ J ] . Energy Education Science and Technology Part A: Energy Science and Research, 2012, 30 (1) : 651 -660.
  • 2孙恒,舒丹,朱鸿梅.采用3S分离器的天然气液化过程的参数分析[J].低温与超导,2010,38(3):25-27. 被引量:8
  • 3孙恒,朱鸿梅,舒丹.3S技术在天然气液化中的应用初探[J].低温与超导,2010,38(1):17-19. 被引量:12
  • 4杨文,曹学文,李开源,等.甲烷气体自发凝结流动过程数值模拟研究[C].第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会,2014.
  • 5Girshick S L, Chiu C P. Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor [ J ] . The Journal of Chemical Physics, 1990, 93 (2) : 1273 -1277.
  • 6Girshick S L Comment on: Self-consistency correction to homogeneous nucleation theory [ J ] . The Journal of Chemical Physics, 1991, 94 ( 1 ) : 826 - 827.
  • 7Gyarmathy G. Grundlagen einer theorie der nassdampft- urbine [ D] . ZUrich: Eidgenoessische Technische Hochschule Zuerich, 1962.
  • 8Benson G C, Shuttleworth R. The surface energy of small nuclei [ J] . The Journal of Chemical Physics, 1951, 19 (1): 130-131.
  • 9National Institute of Standards and Technology. NIST Chemistry Webbook [ EB/OL] . [2014 - 11 -24] . http: //webbook. hist. gov/chemistry/.
  • 10Moses C A, Stein G D. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering Engineering, 1978, lrement [ J ] . Journal of Fluids 100 (3): 311-322.

二级参考文献12

  • 1宋辉,张新军,汪长永,鲁树东.天然气超音速脱水试验研究[J].山东建筑大学学报,2009,24(1):50-53. 被引量:11
  • 2刘芙蓉,范春生.L-K-P状态方程用于多元体系的计算[J].化学工程,1995,23(3):73-77. 被引量:6
  • 3刘恒伟,刘中良,张建,冯永训,颜廷敏.超声波旋流脱水装置及其内部流动的理论解[J].北京工业大学学报,2006,32(9):829-831. 被引量:11
  • 4Alfyorov V, Bagirov L, Dmitriev L, et al. Processing: Supersonic nozzle efficiently separates natural gas components[J]. Oil and Gas Journal, 2005,103(20):53 - 58.
  • 5Feygin V, Imayev S, Alfyorov V, et al. International Gas Union World Gas Conference Papers,2006:162- 168, International Gas Union 23rd World Gas Conference 2006, 2006, Amsterdam.
  • 6Imaev S Z, Rezunenko V I, Baguirov L A, et al. Method of and apparatus for the separation of components of gas mixtures and liquefaction of a gas [ J ]. US6372019, Translang Technologies, Ltd. 2002 (16).
  • 7Alfyorov V,Bagirov L,Dmitriev L,et al.Processing:Supersonic nozzle efficiently separates natural gas components[J].Oil and Gas Journal,2005,103(20):53-58.
  • 8Feygin V,Imayev S,Alfyorov V,et al.International Gas Union 23rd World Gas Conference 2006,Amsterdam,2006,162-168.
  • 9Imaev S Z,Rezunenko V I,Baguirov L A,et al.Method of and apparatus for the separation of components of gas mixtures and liquefaction of a gas[D],US6372019,Translang Technologies,Ltd.2002(16).
  • 10蒋文明,刘中良,刘恒伟,张建,张新军,冯永训.超音速分离管内部流动的二维数值模拟与分析[J].工程热物理学报,2008,29(12):2119-2121. 被引量:14

共引文献11

同被引文献65

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部